{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NConnected
open import lib.types.Empty
open import lib.types.Nat
open import lib.types.Paths
open import lib.types.Pi
open import lib.types.Pointed
open import lib.types.Sigma
open import lib.types.TLevel
open import lib.types.Truncation
module lib.types.LoopSpace where
module _ {i} where
⊙Ω : Ptd i → Ptd i
⊙Ω ⊙[ A , a ] = ⊙[ (a == a) , idp ]
Ω : Ptd i → Type i
Ω = de⊙ ∘ ⊙Ω
module _ {i} {X : Ptd i} where
Ω-! : Ω X → Ω X
Ω-! = !
Ω-∙ : Ω X → Ω X → Ω X
Ω-∙ = _∙_
⊙Ω-∙ : ∀ {i} {X : Ptd i} → ⊙Ω X ⊙× ⊙Ω X ⊙→ ⊙Ω X
⊙Ω-∙ = (uncurry Ω-∙ , idp)
⊙Ω-fmap : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ X ⊙→ Y → ⊙Ω X ⊙→ ⊙Ω Y
⊙Ω-fmap (f , idp) = ap f , idp
Ω-fmap : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ X ⊙→ Y → (Ω X → Ω Y)
Ω-fmap F = fst (⊙Ω-fmap F)
Ω-fmap-β : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) (p : Ω X)
→ Ω-fmap F p == ! (snd F) ∙ ap (fst F) p ∙' snd F
Ω-fmap-β (_ , idp) _ = idp
Ω-isemap : ∀ {i j} {X : Ptd i} {Y : Ptd j}
(F : X ⊙→ Y) → is-equiv (fst F) → is-equiv (Ω-fmap F)
Ω-isemap (f , idp) e = ap-is-equiv e _ _
Ω-emap : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ (X ⊙≃ Y) → (Ω X ≃ Ω Y)
Ω-emap (F , F-is-equiv) = Ω-fmap F , Ω-isemap F F-is-equiv
⊙Ω-emap : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ (X ⊙≃ Y) → (⊙Ω X ⊙≃ ⊙Ω Y)
⊙Ω-emap (F , F-is-equiv) = ⊙Ω-fmap F , Ω-isemap F F-is-equiv
⊙Ω-fmap2 : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ X ⊙× Y ⊙→ Z → ⊙Ω X ⊙× ⊙Ω Y ⊙→ ⊙Ω Z
⊙Ω-fmap2 (f , idp) = (λ{(p , q) → ap2 (curry f) p q}) , idp
⊙Ω-fmap-∘ : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(g : Y ⊙→ Z) (f : X ⊙→ Y)
→ ⊙Ω-fmap (g ⊙∘ f) == ⊙Ω-fmap g ⊙∘ ⊙Ω-fmap f
⊙Ω-fmap-∘ (g , idp) (f , idp) = ⊙λ=' (λ p → ap-∘ g f p) idp
⊙Ω-csmap : ∀ {i₀ i₁ j₀ j₁} {X₀ : Ptd i₀} {X₁ : Ptd i₁}
{Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁}
{hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁}
→ ⊙CommSquare f g hX hY
→ ⊙CommSquare (⊙Ω-fmap f) (⊙Ω-fmap g) (⊙Ω-fmap hX) (⊙Ω-fmap hY)
⊙Ω-csmap {f = f} {g} {hX} {hY} (⊙comm-sqr cs) = ⊙comm-sqr $ ⊙app= $
⊙Ω-fmap hY ⊙∘ ⊙Ω-fmap f
=⟨ ! $ ⊙Ω-fmap-∘ hY f ⟩
⊙Ω-fmap (hY ⊙∘ f)
=⟨ ap ⊙Ω-fmap $ ⊙λ= cs ⟩
⊙Ω-fmap (g ⊙∘ hX)
=⟨ ⊙Ω-fmap-∘ g hX ⟩
⊙Ω-fmap g ⊙∘ ⊙Ω-fmap hX
=∎
⊙Ω-csemap : ∀ {i₀ i₁ j₀ j₁} {X₀ : Ptd i₀} {X₁ : Ptd i₁}
{Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁}
{hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁}
→ ⊙CommSquareEquiv f g hX hY
→ ⊙CommSquareEquiv (⊙Ω-fmap f) (⊙Ω-fmap g) (⊙Ω-fmap hX) (⊙Ω-fmap hY)
⊙Ω-csemap {f = f} {g} {hX} {hY} (⊙comm-sqr cs , hX-ise , hY-ise) =
(⊙comm-sqr $ ⊙app= $
⊙Ω-fmap hY ⊙∘ ⊙Ω-fmap f
=⟨ ! $ ⊙Ω-fmap-∘ hY f ⟩
⊙Ω-fmap (hY ⊙∘ f)
=⟨ ap ⊙Ω-fmap $ ⊙λ= cs ⟩
⊙Ω-fmap (g ⊙∘ hX)
=⟨ ⊙Ω-fmap-∘ g hX ⟩
⊙Ω-fmap g ⊙∘ ⊙Ω-fmap hX
=∎) ,
Ω-isemap hX hX-ise , Ω-isemap hY hY-ise
⊙Ω-fmap-idf : ∀ {i} {X : Ptd i} → ⊙Ω-fmap (⊙idf X) == ⊙idf _
⊙Ω-fmap-idf = ⊙λ=' ap-idf idp
⊙Ω-fmap2-fst : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ ⊙Ω-fmap2 {X = X} {Y = Y} ⊙fst == ⊙fst
⊙Ω-fmap2-fst = ⊙λ=' (uncurry ap2-fst) idp
⊙Ω-fmap2-snd : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ ⊙Ω-fmap2 {X = X} {Y = Y} ⊙snd == ⊙snd
⊙Ω-fmap2-snd = ⊙λ=' (uncurry ap2-snd) idp
⊙Ω-fmap-fmap2 : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(G : Z ⊙→ W) (F : X ⊙× Y ⊙→ Z)
→ ⊙Ω-fmap G ⊙∘ ⊙Ω-fmap2 F == ⊙Ω-fmap2 (G ⊙∘ F)
⊙Ω-fmap-fmap2 (g , idp) (f , idp) =
⊙λ=' (uncurry (ap-ap2 g (curry f))) idp
⊙Ω-fmap2-fmap : ∀ {i j k l m}
{X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m}
(G : (U ⊙× V) ⊙→ Z) (F₁ : X ⊙→ U) (F₂ : Y ⊙→ V)
→ ⊙Ω-fmap2 G ⊙∘ ⊙×-fmap (⊙Ω-fmap F₁) (⊙Ω-fmap F₂) == ⊙Ω-fmap2 (G ⊙∘ ⊙×-fmap F₁ F₂)
⊙Ω-fmap2-fmap (g , idp) (f₁ , idp) (f₂ , idp) =
⊙λ=' (λ {(p , q) → ap2-ap-l (curry g) f₁ p (ap f₂ q)
∙ ap2-ap-r (λ x v → g (f₁ x , v)) f₂ p q})
idp
⊙Ω-fmap2-diag : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙× X ⊙→ Y)
→ ⊙Ω-fmap2 F ⊙∘ ⊙diag == ⊙Ω-fmap (F ⊙∘ ⊙diag)
⊙Ω-fmap2-diag (f , idp) = ⊙λ=' (ap2-diag (curry f)) idp
module _ {i} where
⊙Ω^ : (n : ℕ) → Ptd i → Ptd i
⊙Ω^ O X = X
⊙Ω^ (S n) X = ⊙Ω (⊙Ω^ n X)
Ω^ : (n : ℕ) → Ptd i → Type i
Ω^ n X = de⊙ (⊙Ω^ n X)
⊙Ω^' : (n : ℕ) → Ptd i → Ptd i
⊙Ω^' O X = X
⊙Ω^' (S n) X = (⊙Ω^' n (⊙Ω X))
Ω^' : (n : ℕ) → Ptd i → Type i
Ω^' n X = de⊙ (⊙Ω^' n X)
⊙Ω^-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ X ⊙→ Y → ⊙Ω^ n X ⊙→ ⊙Ω^ n Y
⊙Ω^-fmap O F = F
⊙Ω^-fmap (S n) F = ⊙Ω-fmap (⊙Ω^-fmap n F)
Ω^-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ X ⊙→ Y → (de⊙ (⊙Ω^ n X) → de⊙ (⊙Ω^ n Y))
Ω^-fmap n F = fst (⊙Ω^-fmap n F)
⊙Ω^-csmap : ∀ {i₀ i₁ j₀ j₁} (n : ℕ) {X₀ : Ptd i₀} {X₁ : Ptd i₁}
{Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁}
{hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁}
→ ⊙CommSquare f g hX hY
→ ⊙CommSquare (⊙Ω^-fmap n f) (⊙Ω^-fmap n g) (⊙Ω^-fmap n hX) (⊙Ω^-fmap n hY)
⊙Ω^-csmap O cs = cs
⊙Ω^-csmap (S n) cs = ⊙Ω-csmap (⊙Ω^-csmap n cs)
⊙Ω^'-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ X ⊙→ Y → ⊙Ω^' n X ⊙→ ⊙Ω^' n Y
⊙Ω^'-fmap O F = F
⊙Ω^'-fmap (S n) F = ⊙Ω^'-fmap n (⊙Ω-fmap F)
⊙Ω^'-csmap : ∀ {i₀ i₁ j₀ j₁} (n : ℕ) {X₀ : Ptd i₀} {X₁ : Ptd i₁}
{Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁}
{hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁}
→ ⊙CommSquare f g hX hY
→ ⊙CommSquare (⊙Ω^'-fmap n f) (⊙Ω^'-fmap n g) (⊙Ω^'-fmap n hX) (⊙Ω^'-fmap n hY)
⊙Ω^'-csmap O cs = cs
⊙Ω^'-csmap (S n) cs = ⊙Ω^'-csmap n (⊙Ω-csmap cs)
Ω^'-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ X ⊙→ Y → (de⊙ (⊙Ω^' n X) → de⊙ (⊙Ω^' n Y))
Ω^'-fmap n F = fst (⊙Ω^'-fmap n F)
⊙Ω^-fmap2 : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ ((X ⊙× Y) ⊙→ Z)
→ ((⊙Ω^ n X ⊙× ⊙Ω^ n Y) ⊙→ ⊙Ω^ n Z)
⊙Ω^-fmap2 O F = F
⊙Ω^-fmap2 (S n) F = ⊙Ω-fmap2 (⊙Ω^-fmap2 n F)
Ω^-fmap2 : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ ((X ⊙× Y) ⊙→ Z)
→ ((Ω^ n X) × (Ω^ n Y) → Ω^ n Z)
Ω^-fmap2 n F = fst (⊙Ω^-fmap2 n F)
⊙Ω^'-fmap2 : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ ((X ⊙× Y) ⊙→ Z)
→ ((⊙Ω^' n X ⊙× ⊙Ω^' n Y) ⊙→ ⊙Ω^' n Z)
⊙Ω^'-fmap2 O F = F
⊙Ω^'-fmap2 (S n) F = ⊙Ω^'-fmap2 n (⊙Ω-fmap2 F)
Ω^'-fmap2 : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ ((X ⊙× Y) ⊙→ Z)
→ ((Ω^' n X) × (Ω^' n Y) → Ω^' n Z)
Ω^'-fmap2 n F = fst (⊙Ω^'-fmap2 n F)
⊙Ω^-fmap-∘ : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(g : Y ⊙→ Z) (f : X ⊙→ Y)
→ ⊙Ω^-fmap n (g ⊙∘ f) == ⊙Ω^-fmap n g ⊙∘ ⊙Ω^-fmap n f
⊙Ω^-fmap-∘ O _ _ = idp
⊙Ω^-fmap-∘ (S n) g f = ap ⊙Ω-fmap (⊙Ω^-fmap-∘ n g f)
∙ ⊙Ω-fmap-∘ (⊙Ω^-fmap n g) (⊙Ω^-fmap n f)
⊙Ω^-fmap-idf : ∀ {i} (n : ℕ) {X : Ptd i} → ⊙Ω^-fmap n (⊙idf X) == ⊙idf _
⊙Ω^-fmap-idf O = idp
⊙Ω^-fmap-idf (S n) = ap ⊙Ω-fmap (⊙Ω^-fmap-idf n) ∙ ⊙Ω-fmap-idf
Ω^-fmap-idf : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^-fmap n (⊙idf X) == idf _
Ω^-fmap-idf n = fst= $ ⊙Ω^-fmap-idf n
⊙Ω^'-fmap-idf : ∀ {i} (n : ℕ) {X : Ptd i} → ⊙Ω^'-fmap n (⊙idf X) == ⊙idf _
⊙Ω^'-fmap-idf O = idp
⊙Ω^'-fmap-idf (S n) = ap (⊙Ω^'-fmap n) ⊙Ω-fmap-idf ∙ ⊙Ω^'-fmap-idf n
Ω^'-fmap-idf : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^'-fmap n (⊙idf X) == idf _
Ω^'-fmap-idf n = fst= $ ⊙Ω^'-fmap-idf n
⊙Ω^-fmap-fmap2 : ∀ {i j k l} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(G : Z ⊙→ W) (F : (X ⊙× Y) ⊙→ Z)
→ ⊙Ω^-fmap n G ⊙∘ ⊙Ω^-fmap2 n F == ⊙Ω^-fmap2 n (G ⊙∘ F)
⊙Ω^-fmap-fmap2 O G F = idp
⊙Ω^-fmap-fmap2 (S n) G F = ⊙Ω-fmap-fmap2 (⊙Ω^-fmap n G) (⊙Ω^-fmap2 n F) ∙ ap ⊙Ω-fmap2 (⊙Ω^-fmap-fmap2 n G F)
Ω^-fmap-fmap2 : ∀ {i j k l} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(G : Z ⊙→ W) (F : (X ⊙× Y) ⊙→ Z)
→ Ω^-fmap n G ∘ Ω^-fmap2 n F == Ω^-fmap2 n (G ⊙∘ F)
Ω^-fmap-fmap2 n G F = fst= $ ⊙Ω^-fmap-fmap2 n G F
⊙Ω^-fmap2-fst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ ⊙Ω^-fmap2 n {X} {Y} ⊙fst == ⊙fst
⊙Ω^-fmap2-fst O = idp
⊙Ω^-fmap2-fst (S n) = ap ⊙Ω-fmap2 (⊙Ω^-fmap2-fst n) ∙ ⊙Ω-fmap2-fst
Ω^-fmap2-fst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ Ω^-fmap2 n {X} {Y} ⊙fst == fst
Ω^-fmap2-fst n = fst= $ ⊙Ω^-fmap2-fst n
⊙Ω^-fmap2-snd : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ ⊙Ω^-fmap2 n {X} {Y} ⊙snd == ⊙snd
⊙Ω^-fmap2-snd O = idp
⊙Ω^-fmap2-snd (S n) = ap ⊙Ω-fmap2 (⊙Ω^-fmap2-snd n) ∙ ⊙Ω-fmap2-snd
Ω^-fmap2-snd : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ Ω^-fmap2 n {X} {Y} ⊙snd == snd
Ω^-fmap2-snd n = fst= $ ⊙Ω^-fmap2-snd n
⊙Ω^-fmap2-fmap : ∀ {i j k l m} (n : ℕ)
{X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m}
(G : (U ⊙× V) ⊙→ Z) (F₁ : X ⊙→ U) (F₂ : Y ⊙→ V)
→ ⊙Ω^-fmap2 n G ⊙∘ ⊙×-fmap (⊙Ω^-fmap n F₁) (⊙Ω^-fmap n F₂) == ⊙Ω^-fmap2 n (G ⊙∘ ⊙×-fmap F₁ F₂)
⊙Ω^-fmap2-fmap O G F₁ F₂ = idp
⊙Ω^-fmap2-fmap (S n) G F₁ F₂ =
⊙Ω-fmap2-fmap (⊙Ω^-fmap2 n G) (⊙Ω^-fmap n F₁) (⊙Ω^-fmap n F₂) ∙ ap ⊙Ω-fmap2 (⊙Ω^-fmap2-fmap n G F₁ F₂)
Ω^-fmap2-fmap : ∀ {i j k l m} (n : ℕ)
{X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m}
(G : (U ⊙× V) ⊙→ Z) (F₁ : X ⊙→ U) (F₂ : Y ⊙→ V)
→ Ω^-fmap2 n G ∘ ×-fmap (Ω^-fmap n F₁) (Ω^-fmap n F₂) == Ω^-fmap2 n (G ⊙∘ ⊙×-fmap F₁ F₂)
Ω^-fmap2-fmap n G F₁ F₂ = fst= $ ⊙Ω^-fmap2-fmap n G F₁ F₂
⊙Ω^-fmap2-diag : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (F : X ⊙× X ⊙→ Y)
→ ⊙Ω^-fmap2 n F ⊙∘ ⊙diag == ⊙Ω^-fmap n (F ⊙∘ ⊙diag)
⊙Ω^-fmap2-diag O F = idp
⊙Ω^-fmap2-diag (S n) F = ⊙Ω-fmap2-diag (⊙Ω^-fmap2 n F) ∙ ap ⊙Ω-fmap (⊙Ω^-fmap2-diag n F)
Ω^-fmap2-diag : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (F : X ⊙× X ⊙→ Y)
→ Ω^-fmap2 n F ∘ diag == Ω^-fmap n (F ⊙∘ ⊙diag)
Ω^-fmap2-diag n F = fst= $ ⊙Ω^-fmap2-diag n F
module _ {i} (n : ℕ) {X : Ptd i} where
Ω^S-! : Ω^ (S n) X → Ω^ (S n) X
Ω^S-! = Ω-!
Ω^S-∙ : Ω^ (S n) X → Ω^ (S n) X → Ω^ (S n) X
Ω^S-∙ = Ω-∙
module _ {i} where
Ω^'S-! : (n : ℕ) {X : Ptd i} → Ω^' (S n) X → Ω^' (S n) X
Ω^'S-! O = Ω-!
Ω^'S-! (S n) {X} = Ω^'S-! n {⊙Ω X}
Ω^'S-∙ : (n : ℕ) {X : Ptd i} → Ω^' (S n) X → Ω^' (S n) X → Ω^' (S n) X
Ω^'S-∙ O = Ω-∙
Ω^'S-∙ (S n) {X} = Ω^'S-∙ n {⊙Ω X}
idp^ : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^ n X
idp^ n {X} = pt (⊙Ω^ n X)
idp^' : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^' n X
idp^' n {X} = pt (⊙Ω^' n X)
module _ {i} (n : ℕ) {X : Ptd i} where
Ω^S-∙-unit-l : (q : Ω^ (S n) X)
→ (Ω^S-∙ n (idp^ (S n)) q) == q
Ω^S-∙-unit-l _ = idp
Ω^S-∙-unit-r : (q : Ω^ (S n) X)
→ (Ω^S-∙ n q (idp^ (S n))) == q
Ω^S-∙-unit-r = ∙-unit-r
Ω^S-∙-assoc : (p q r : Ω^ (S n) X)
→ Ω^S-∙ n (Ω^S-∙ n p q) r == Ω^S-∙ n p (Ω^S-∙ n q r)
Ω^S-∙-assoc = ∙-assoc
Ω^S-!-inv-l : (p : Ω^ (S n) X)
→ Ω^S-∙ n (Ω^S-! n p) p == idp^ (S n)
Ω^S-!-inv-l = !-inv-l
Ω^S-!-inv-r : (p : Ω^ (S n) X)
→ Ω^S-∙ n p (Ω^S-! n p) == idp^ (S n)
Ω^S-!-inv-r = !-inv-r
module _ {i} where
Ω^'S-∙-unit-l : (n : ℕ) {X : Ptd i} (q : Ω^' (S n) X)
→ (Ω^'S-∙ n (idp^' (S n)) q) == q
Ω^'S-∙-unit-l O _ = idp
Ω^'S-∙-unit-l (S n) = Ω^'S-∙-unit-l n
Ω^'S-∙-unit-r : (n : ℕ) {X : Ptd i} (q : Ω^' (S n) X)
→ (Ω^'S-∙ n q (idp^' (S n))) == q
Ω^'S-∙-unit-r O = ∙-unit-r
Ω^'S-∙-unit-r (S n) = Ω^'S-∙-unit-r n
Ω^'S-∙-assoc : (n : ℕ) {X : Ptd i} (p q r : Ω^' (S n) X)
→ Ω^'S-∙ n (Ω^'S-∙ n p q) r == Ω^'S-∙ n p (Ω^'S-∙ n q r)
Ω^'S-∙-assoc O = ∙-assoc
Ω^'S-∙-assoc (S n) = Ω^'S-∙-assoc n
Ω^'S-!-inv-l : (n : ℕ) {X : Ptd i} (p : Ω^' (S n) X)
→ Ω^'S-∙ n (Ω^'S-! n p) p == idp^' (S n)
Ω^'S-!-inv-l O = !-inv-l
Ω^'S-!-inv-l (S n) = Ω^'S-!-inv-l n
Ω^'S-!-inv-r : (n : ℕ) {X : Ptd i} (p : Ω^' (S n) X)
→ Ω^'S-∙ n p (Ω^'S-! n p) == idp^' (S n)
Ω^'S-!-inv-r O = !-inv-r
Ω^'S-!-inv-r (S n) = Ω^'S-!-inv-r n
module _ where
Ω-fmap-∙ : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) (p q : Ω X)
→ Ω-fmap F (p ∙ q) == Ω-fmap F p ∙ Ω-fmap F q
Ω-fmap-∙ (f , idp) p q = ap-∙ f p q
Ω^S-fmap-∙ : ∀ {i j} (n : ℕ)
{X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) (p q : Ω^ (S n) X)
→ Ω^-fmap (S n) F (Ω^S-∙ n p q)
== Ω^S-∙ n (Ω^-fmap (S n) F p) (Ω^-fmap (S n) F q)
Ω^S-fmap-∙ n F = Ω-fmap-∙ (⊙Ω^-fmap n F)
Ω^'S-fmap-∙ : ∀ {i j} (n : ℕ)
{X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) (p q : Ω^' (S n) X)
→ Ω^'-fmap (S n) F (Ω^'S-∙ n p q)
== Ω^'S-∙ n (Ω^'-fmap (S n) F p) (Ω^'-fmap (S n) F q)
Ω^'S-fmap-∙ O = Ω-fmap-∙
Ω^'S-fmap-∙ (S n) F = Ω^'S-fmap-∙ n (⊙Ω-fmap F)
module _ {i j} {X : Ptd i} {Y : Ptd j} where
Ω^-isemap : (n : ℕ) (F : X ⊙→ Y) (e : is-equiv (fst F))
→ is-equiv (Ω^-fmap n F)
Ω^-isemap O F e = e
Ω^-isemap (S n) F e = Ω-isemap (⊙Ω^-fmap n F) (Ω^-isemap n F e)
⊙Ω^-isemap = Ω^-isemap
Ω^-emap : (n : ℕ) → X ⊙≃ Y → Ω^ n X ≃ Ω^ n Y
Ω^-emap n (F , e) = Ω^-fmap n F , Ω^-isemap n F e
⊙Ω^-emap : (n : ℕ) → X ⊙≃ Y → ⊙Ω^ n X ⊙≃ ⊙Ω^ n Y
⊙Ω^-emap n (F , e) = ⊙Ω^-fmap n F , ⊙Ω^-isemap n F e
⊙Ω^-csemap : ∀ {i₀ i₁ j₀ j₁} (n : ℕ) {X₀ : Ptd i₀} {X₁ : Ptd i₁}
{Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁}
{hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁}
→ ⊙CommSquareEquiv f g hX hY
→ ⊙CommSquareEquiv (⊙Ω^-fmap n f) (⊙Ω^-fmap n g) (⊙Ω^-fmap n hX) (⊙Ω^-fmap n hY)
⊙Ω^-csemap n {hX = hX} {hY} (cs , hX-ise , hY-ise) = ⊙Ω^-csmap n cs , Ω^-isemap n hX hX-ise , Ω^-isemap n hY hY-ise
module _ {i j} where
Ω^'-isemap : {X : Ptd i} {Y : Ptd j} (n : ℕ) (F : X ⊙→ Y) (e : is-equiv (fst F))
→ is-equiv (Ω^'-fmap n F)
Ω^'-isemap O F e = e
Ω^'-isemap (S n) F e = Ω^'-isemap n (⊙Ω-fmap F) (Ω-isemap F e)
⊙Ω^'-isemap = Ω^'-isemap
Ω^'-emap : {X : Ptd i} {Y : Ptd j} (n : ℕ) → X ⊙≃ Y → Ω^' n X ≃ Ω^' n Y
Ω^'-emap n (F , e) = Ω^'-fmap n F , Ω^'-isemap n F e
⊙Ω^'-emap : {X : Ptd i} {Y : Ptd j} (n : ℕ) → X ⊙≃ Y → ⊙Ω^' n X ⊙≃ ⊙Ω^' n Y
⊙Ω^'-emap n (F , e) = ⊙Ω^'-fmap n F , ⊙Ω^'-isemap n F e
⊙Ω^'-csemap : ∀ {i₀ i₁ j₀ j₁} (n : ℕ) {X₀ : Ptd i₀} {X₁ : Ptd i₁}
{Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {f : X₀ ⊙→ Y₀} {g : X₁ ⊙→ Y₁}
{hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁}
→ ⊙CommSquareEquiv f g hX hY
→ ⊙CommSquareEquiv (⊙Ω^'-fmap n f) (⊙Ω^'-fmap n g) (⊙Ω^'-fmap n hX) (⊙Ω^'-fmap n hY)
⊙Ω^'-csemap n {hX = hX} {hY} (cs , hX-ise , hY-ise) = ⊙Ω^'-csmap n cs , Ω^'-isemap n hX hX-ise , Ω^'-isemap n hY hY-ise
Ω^-level : ∀ {i} (m : ℕ₋₂) (n : ℕ) (X : Ptd i)
→ (has-level (⟨ n ⟩₋₂ +2+ m) (de⊙ X) → has-level m (Ω^ n X))
Ω^-level m O X pX = pX
Ω^-level m (S n) X pX =
has-level-apply (Ω^-level (S m) n X
(transport (λ k → has-level k (de⊙ X)) (! (+2+-βr ⟨ n ⟩₋₂ m)) pX))
(idp^ n) (idp^ n)
Ω^'-is-set : ∀ {i} (n : ℕ) (X : Ptd i)
→ (has-level ⟨ n ⟩ (de⊙ X) → is-set (Ω^' n X))
Ω^'-is-set O X pX = pX
Ω^'-is-set (S n) X pX = Ω^'-is-set n (⊙Ω X) (has-level-apply pX (pt X) (pt X))
Ω^'-is-prop : ∀ {i} (n : ℕ) (X : Ptd i)
→ (has-level ⟨ n ⟩₋₁ (de⊙ X) → is-prop (Ω^' n X))
Ω^'-is-prop O X pX = pX
Ω^'-is-prop (S n) X pX = Ω^'-is-prop n (⊙Ω X) (has-level-apply pX (pt X) (pt X))
Ω^-conn : ∀ {i} (m : ℕ₋₂) (n : ℕ) (X : Ptd i)
→ (is-connected (⟨ n ⟩₋₂ +2+ m) (de⊙ X)) → is-connected m (Ω^ n X)
Ω^-conn m O X pX = pX
Ω^-conn m (S n) X pX =
path-conn $ Ω^-conn (S m) n X $
transport (λ k → is-connected k (de⊙ X)) (! (+2+-βr ⟨ n ⟩₋₂ m)) pX
module _ {i} {X : Ptd i} where
Ω-fmap2-∙ : (α β : Ω^ 2 X) → ap2 _∙_ α β == Ω^S-∙ 1 α β
Ω-fmap2-∙ α β = =ₛ-out (ap2-out _∙_ α β) ∙ ap2 _∙_ (lemma α) (ap-idf β)
where
lemma : ∀ {i} {A : Type i} {x y : A} {p q : x == y} (α : p == q)
→ ap (λ r → r ∙ idp) α == ∙-unit-r p ∙ α ∙' ! (∙-unit-r q)
lemma {p = idp} idp = idp
⊙Ω-fmap2-∙ : ⊙Ω-fmap2 (⊙Ω-∙ {X = X}) == ⊙Ω-∙
⊙Ω-fmap2-∙ = ⊙λ=' (uncurry Ω-fmap2-∙) idp
Ω^2-∙-comm : (α β : Ω^ 2 X) → Ω^S-∙ 1 α β == Ω^S-∙ 1 β α
Ω^2-∙-comm α β = ! (⋆2=Ω^S-∙ α β) ∙ ⋆2=⋆'2 α β ∙ ⋆'2=Ω^S-∙ α β
where
⋆2=Ω^S-∙ : (α β : Ω^ 2 X) → α ⋆2 β == Ω^S-∙ 1 α β
⋆2=Ω^S-∙ α β = ap (λ π → π ∙ β) (∙-unit-r α)
⋆'2=Ω^S-∙ : (α β : Ω^ 2 X) → α ⋆'2 β == Ω^S-∙ 1 β α
⋆'2=Ω^S-∙ α β = ap (λ π → β ∙ π) (∙-unit-r α)
module _ {i} where
⊙Ω^-Ω-split : (n : ℕ) (X : Ptd i)
→ (⊙Ω^ (S n) X ⊙→ ⊙Ω^ n (⊙Ω X))
⊙Ω^-Ω-split O _ = (idf _ , idp)
⊙Ω^-Ω-split (S n) X = ⊙Ω-fmap (⊙Ω^-Ω-split n X)
Ω^-Ω-split : (n : ℕ) (X : Ptd i)
→ (Ω^ (S n) X → Ω^ n (⊙Ω X))
Ω^-Ω-split n X = fst (⊙Ω^-Ω-split n X)
Ω^S-Ω-split-∙ : (n : ℕ)
(X : Ptd i) (p q : Ω^ (S (S n)) X)
→ Ω^-Ω-split (S n) X (Ω^S-∙ (S n) p q)
== Ω^S-∙ n (Ω^-Ω-split (S n) X p) (Ω^-Ω-split (S n) X q)
Ω^S-Ω-split-∙ n X p q =
Ω^S-fmap-∙ 0 (⊙Ω^-Ω-split n X) p q
Ω^-Ω-split-is-equiv : (n : ℕ) (X : Ptd i)
→ is-equiv (Ω^-Ω-split n X)
Ω^-Ω-split-is-equiv O X = is-eq (idf _) (idf _) (λ _ → idp) (λ _ → idp)
Ω^-Ω-split-is-equiv (S n) X =
⊙Ω^-isemap 1 (⊙Ω^-Ω-split n X) (Ω^-Ω-split-is-equiv n X)
Ω^-Ω-split-equiv : (n : ℕ) (X : Ptd i) → Ω^ (S n) X ≃ Ω^ n (⊙Ω X)
Ω^-Ω-split-equiv n X = _ , Ω^-Ω-split-is-equiv n X
module _ {i j} (X : Ptd i) (Y : Ptd j) where
Ω-× : Ω (X ⊙× Y) ≃ Ω X × Ω Y
Ω-× = equiv
(λ p → fst×= p , snd×= p)
(λ p → pair×= (fst p) (snd p))
(λ p → pair×= (fst×=-β (fst p) (snd p)) (snd×=-β (fst p) (snd p)))
(! ∘ pair×=-η)
⊙Ω-× : ⊙Ω (X ⊙× Y) ⊙≃ ⊙Ω X ⊙× ⊙Ω Y
⊙Ω-× = ≃-to-⊙≃ Ω-× idp
Ω-×-∙ : ∀ (p q : Ω (X ⊙× Y))
→ –> Ω-× (p ∙ q) == (fst (–> Ω-× p) ∙ fst (–> Ω-× q) , snd (–> Ω-× p) ∙ snd (–> Ω-× q))
Ω-×-∙ p q = pair×= (Ω-fmap-∙ ⊙fst p q) (Ω-fmap-∙ ⊙snd p q)
module _ {i j} where
⊙Ω^-× : ∀ (n : ℕ) (X : Ptd i) (Y : Ptd j)
→ ⊙Ω^ n (X ⊙× Y) ⊙≃ ⊙Ω^ n X ⊙× ⊙Ω^ n Y
⊙Ω^-× O _ _ = ⊙ide _
⊙Ω^-× (S n) X Y = ⊙Ω-× (⊙Ω^ n X) (⊙Ω^ n Y) ⊙∘e ⊙Ω-emap (⊙Ω^-× n X Y)
⊙Ω^'-× : ∀ (n : ℕ) (X : Ptd i) (Y : Ptd j)
→ ⊙Ω^' n (X ⊙× Y) ⊙≃ ⊙Ω^' n X ⊙× ⊙Ω^' n Y
⊙Ω^'-× O _ _ = ⊙ide _
⊙Ω^'-× (S n) X Y = ⊙Ω^'-× n (⊙Ω X) (⊙Ω Y) ⊙∘e ⊙Ω^'-emap n (⊙Ω-× X Y)