{-# OPTIONS --without-K --rewriting --overlapping-instances #-}
open import lib.Basics
open import lib.NType2
open import lib.Equivalence2
open import lib.types.Unit
open import lib.types.Nat
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Paths
open import lib.types.TLevel
open import lib.types.Truncation
module lib.NConnected where
is-connected : ∀ {i} → ℕ₋₂ → Type i → Type i
is-connected n A = is-contr (Trunc n A)
has-conn-fibers : ∀ {i j} {A : Type i} {B : Type j} → ℕ₋₂ → (A → B) → Type (lmax i j)
has-conn-fibers {A = A} {B = B} n f =
Π B (λ b → is-connected n (hfiber f b))
-2-conn : ∀ {i} (A : Type i) → is-connected -2 A
-2-conn A = Trunc-level
inhab-conn : ∀ {i} {A : Type i} (a : A) → is-connected -1 A
inhab-conn a = has-level-in ([ a ] , prop-has-all-paths [ a ])
is-connected-is-prop : ∀ {i} {n : ℕ₋₂} {A : Type i}
→ is-prop (is-connected n A)
is-connected-is-prop = is-contr-is-prop
abstract
pre∘-conn-is-equiv : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂}
→ {h : A → B} → has-conn-fibers n h
→ (∀ {k} (P : B → n -Type k) → is-equiv (λ (s : Π B (fst ∘ P)) → s ∘ h))
pre∘-conn-is-equiv {A = A} {B = B} {n = n} {h = h} c P = is-eq f g f-g g-f
where f : Π B (fst ∘ P) → Π A (fst ∘ P ∘ h)
f k a = k (h a)
helper : Π A (fst ∘ P ∘ h)
→ (b : B) → Trunc n (Σ A (λ a → h a == b)) → (fst (P b))
helper t b r =
Trunc-rec {{snd (P b)}}
(λ x → transport (λ y → fst (P y)) (snd x) (t (fst x)))
r
g : Π A (fst ∘ P ∘ h) → Π B (fst ∘ P)
g t b = helper t b (contr-center (c b))
f-g : ∀ t → f (g t) == t
f-g t = λ= $ λ a → transport
(λ r → Trunc-rec {{snd (P (h a))}} _ r == t a)
(! (contr-path(c (h a)) [ (a , idp) ]))
idp
g-f : ∀ k → g (f k) == k
g-f k = λ= $ λ (b : B) →
Trunc-elim {{λ {r} → =-preserves-level {x = helper (k ∘ h) b r} (snd (P b))}}
(λ x → lemma (fst x) b (snd x)) (contr-center (c b))
where
lemma : ∀ xl → ∀ b → (p : h xl == b) →
helper (k ∘ h) b [ (xl , p) ] == k b
lemma xl ._ idp = idp
conn-extend : ∀ {i j k} {A : Type i} {B : Type j} {n : ℕ₋₂}
→ {h : A → B} → has-conn-fibers n h
→ (P : B → n -Type k)
→ Π A (fst ∘ P ∘ h) → Π B (fst ∘ P)
conn-extend c P f = is-equiv.g (pre∘-conn-is-equiv c P) f
conn-out = conn-extend
conn-extend-β : ∀ {i j k} {A : Type i} {B : Type j} {n : ℕ₋₂}
{h : A → B} (c : has-conn-fibers n h)
(P : B → n -Type k) (f : Π A (fst ∘ P ∘ h))
→ ∀ a → (conn-extend c P f (h a)) == f a
conn-extend-β c P f = app= (is-equiv.f-g (pre∘-conn-is-equiv c P) f)
conn-extend-general : ∀ {i j} {A : Type i} {B : Type j} {n k : ℕ₋₂}
→ {f : A → B} → has-conn-fibers n f
→ ∀ {l} (P : B → (k +2+ n) -Type l)
→ ∀ t → has-level k (Σ (Π B (fst ∘ P)) (λ s → (s ∘ f) == t))
conn-extend-general {k = ⟨-2⟩} c P t =
equiv-is-contr-map (pre∘-conn-is-equiv c P) t
conn-extend-general {B = B} {n = n} {k = S k'} {f = f} c P t = has-level-in
λ {(g , p) (h , q) →
equiv-preserves-level (e g h p q)
{{conn-extend-general {k = k'} c (Q g h) (app= (p ∙ ! q))}} }
where
Q : (g h : Π B (fst ∘ P)) → B → (k' +2+ n) -Type _
Q g h b = ((g b == h b) , has-level-apply (snd (P b)) _ _)
app=-pre∘ : ∀ {i j k} {A : Type i} {B : Type j} {C : B → Type k}
(f : A → B) {g h : Π B C} (p : g == h)
→ app= (ap (λ k → k ∘ f) p) == app= p ∘ f
app=-pre∘ f idp = idp
move-right-on-right-econv : ∀ {i} {A : Type i} {x y z : A}
(p : x == y) (q : x == z) (r : y == z)
→ (p == q ∙ ! r) ≃ (p ∙ r == q)
move-right-on-right-econv {x = x} p idp idp =
(_ , pre∙-is-equiv (∙-unit-r p))
lemma : ∀ g h p q → (H : g ∼ h)
→ ((H ∘ f) == app= (p ∙ ! q))
≃ (ap (λ v → v ∘ f) (λ= H) ∙ q == p)
lemma g h p q H =
move-right-on-right-econv (ap (λ v → v ∘ f) (λ= H)) p q
∘e transport (λ w → (w == app= (p ∙ ! q))
≃ (ap (λ v → v ∘ f) (λ= H) == p ∙ ! q))
(app=-pre∘ f (λ= H) ∙ ap (λ k → k ∘ f) (λ= $ app=-β H))
(ap-equiv app=-equiv _ _ ⁻¹)
e : ∀ g h p q →
(Σ (g ∼ h) (λ r → (r ∘ f) == app= (p ∙ ! q)))
≃ ((g , p) == (h , q))
e g h p q =
((=Σ-econv _ _ ∘e Σ-emap-r (λ u → ↓-app=cst-econv ∘e !-equiv))
∘e (Σ-emap-l _ λ=-equiv)) ∘e Σ-emap-r (lemma g h p q)
conn-in : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} {h : A → B}
→ (∀ (P : B → n -Type (lmax i j))
→ Σ (Π A (fst ∘ P ∘ h) → Π B (fst ∘ P))
(λ u → ∀ (t : Π A (fst ∘ P ∘ h)) → u t ∘ h ∼ t))
→ has-conn-fibers n h
conn-in {A = A} {B = B} {h = h} sec b =
let s = sec (λ b → (Trunc _ (hfiber h b) , Trunc-level))
in has-level-in (fst s (λ a → [ a , idp ]) b ,
Trunc-elim (λ k → transport
(λ v → fst s (λ a → [ a , idp ]) (fst v) == [ fst k , snd v ])
(contr-path (pathfrom-is-contr (h (fst k))) (b , snd k))
(snd s (λ a → [ a , idp ]) (fst k))))
abstract
pointed-conn-in : ∀ {i} {n : ℕ₋₂} (A : Type i) (a₀ : A)
→ has-conn-fibers {A = ⊤} n (cst a₀) → is-connected (S n) A
pointed-conn-in {n = n} A a₀ c = has-level-in
([ a₀ ] ,
Trunc-elim
(λ a → Trunc-rec
(λ x → ap [_] (snd x)) (contr-center $ c a)))
abstract
pointed-conn-out : ∀ {i} {n : ℕ₋₂} (A : Type i) (a₀ : A)
{{_ : is-connected (S n) A}} → has-conn-fibers {A = ⊤} n (cst a₀)
pointed-conn-out {n = n} A a₀ {{c}} a = has-level-in
(point ,
λ y → ! (cancel point)
∙ (ap out $ contr-has-all-paths (into point) (into y))
∙ cancel y)
where
into-aux : Trunc n (Σ ⊤ (λ _ → a₀ == a)) → Trunc n (a₀ == a)
into-aux = Trunc-fmap snd
into : Trunc n (Σ ⊤ (λ _ → a₀ == a))
→ [_] {n = S n} a₀ == [ a ]
into = <– (=ₜ-equiv [ a₀ ] [ a ]) ∘ into-aux
out-aux : Trunc n (a₀ == a) → Trunc n (Σ ⊤ (λ _ → a₀ == a))
out-aux = Trunc-fmap (λ p → (tt , p))
out : [_] {n = S n} a₀ == [ a ] → Trunc n (Σ ⊤ (λ _ → a₀ == a))
out = out-aux ∘ –> (=ₜ-equiv [ a₀ ] [ a ])
cancel : (x : Trunc n (Σ ⊤ (λ _ → a₀ == a))) → out (into x) == x
cancel x =
out (into x)
=⟨ ap out-aux (<–-inv-r (=ₜ-equiv [ a₀ ] [ a ]) (into-aux x)) ⟩
out-aux (into-aux x)
=⟨ Trunc-fmap-∘ _ _ x ⟩
Trunc-fmap (λ q → (tt , (snd q))) x
=⟨ Trunc-elim {P = λ x → Trunc-fmap (λ q → (tt , snd q)) x == x}
(λ _ → idp) x ⟩
x =∎
point : Trunc n (Σ ⊤ (λ _ → a₀ == a))
point = out $ contr-has-all-paths [ a₀ ] [ a ]
prop-over-connected : ∀ {i j} {A : Type i} {a : A} {{p : is-connected 0 A}}
→ (P : A → hProp j)
→ fst (P a) → Π A (fst ∘ P)
prop-over-connected P x = conn-extend (pointed-conn-out _ _) P (λ _ → x)
Trunc-preserves-conn : ∀ {i} {A : Type i} {n : ℕ₋₂} {m : ℕ₋₂}
→ is-connected n A → is-connected n (Trunc m A)
Trunc-preserves-conn {n = ⟨-2⟩} _ = Trunc-level
Trunc-preserves-conn {A = A} {n = S n} {m} c = lemma (contr-center c) (contr-path c)
where
lemma : (x₀ : Trunc (S n) A) → (∀ x → x₀ == x) → is-connected (S n) (Trunc m A)
lemma = Trunc-elim
(λ a → λ p → has-level-in ([ [ a ] ] ,
Trunc-elim
(Trunc-elim
{{=-preserves-level
(Trunc-preserves-level (S n) Trunc-level)}}
(λ x → <– (=ₜ-equiv [ [ a ] ] [ [ x ] ])
(Trunc-fmap (ap [_])
(–> (=ₜ-equiv [ a ] [ x ]) (p [ x ])))))))
instance
Trunc-preserves-conn-instance : ∀ {i} {A : Type i} {n : ℕ₋₂} {m : ℕ₋₂}
→ {{is-connected n A}} → is-connected n (Trunc m A)
Trunc-preserves-conn-instance {{pA}} = Trunc-preserves-conn pA
abstract
Σ-conn : ∀ {i} {j} {A : Type i} {B : A → Type j} {n : ℕ₋₂}
→ is-connected n A → (∀ a → is-connected n (B a))
→ is-connected n (Σ A B)
Σ-conn {A = A} {B = B} {n = ⟨-2⟩} cA cB = -2-conn (Σ A B)
Σ-conn {A = A} {B = B} {n = S m} cA cB =
Trunc-elim
{P = λ ta → (∀ tx → ta == tx) → is-connected (S m) (Σ A B)}
(λ a₀ pA →
Trunc-elim
{P = λ tb → (∀ ty → tb == ty) → is-connected (S m) (Σ A B)}
(λ b₀ pB → has-level-in
([ a₀ , b₀ ] ,
Trunc-elim
{P = λ tp → [ a₀ , b₀ ] == tp}
(λ {(r , s) →
Trunc-rec
(λ pa → Trunc-rec
(λ pb → ap [_] (pair= pa (from-transp! B pa pb)))
(–> (=ₜ-equiv [ b₀ ] [ transport! B pa s ])
(pB [ transport! B pa s ])))
(–> (=ₜ-equiv [ a₀ ] [ r ]) (pA [ r ]))})))
(contr-center (cB a₀)) (contr-path (cB a₀)))
(contr-center cA) (contr-path cA)
×-conn : ∀ {i} {j} {A : Type i} {B : Type j} {n : ℕ₋₂}
→ is-connected n A → is-connected n B
→ is-connected n (A × B)
×-conn cA cB = Σ-conn cA (λ _ → cB)
instance
Σ-conn-instance : ∀ {i} {j} {A : Type i} {B : A → Type j} {n : ℕ₋₂}
→ {{is-connected n A}} → {{{a : A} → is-connected n (B a)}}
→ is-connected n (Σ A B)
Σ-conn-instance {{pA}} {{pB}} = Σ-conn pA (λ _ → pB)
abstract
path-conn : ∀ {i} {A : Type i} {x y : A} {n : ℕ₋₂}
→ is-connected (S n) A → is-connected n (x == y)
path-conn {x = x} {y = y} cA =
equiv-preserves-level (=ₜ-equiv [ x ] [ y ])
{{has-level-apply (contr-is-prop cA) [ x ] [ y ]}}
instance
path-conn-instance : ∀ {i} {A : Type i} {x y : A} {n : ℕ₋₂}
→ {{is-connected (S n) A}} → is-connected n (x == y)
path-conn-instance {{pA}} = path-conn pA
connected-at-level-is-contr : ∀ {i} {A : Type i} {n : ℕ₋₂}
{{pA : has-level n A}} {{cA : is-connected n A}} → is-contr A
connected-at-level-is-contr {{pA}} {{cA}} =
equiv-preserves-level (unTrunc-equiv _) {{cA}}
connected-≤T : ∀ {i} {m n : ℕ₋₂} {A : Type i}
→ m ≤T n → {{_ : is-connected n A}} → is-connected m A
connected-≤T {m = m} {n = n} {A = A} leq =
transport (λ B → is-contr B)
(ua (Trunc-fuse A m n) ∙ ap (λ k → Trunc k A) (minT-out-l leq))
(Trunc-preserves-level m ⟨⟩)
equiv-preserves-conn : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} (e : A ≃ B)
{{_ : is-connected n A}} → is-connected n B
equiv-preserves-conn {n = n} e = equiv-preserves-level (Trunc-emap e)
∘-conn : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
→ {n : ℕ₋₂} → (f : A → B) → (g : B → C)
→ has-conn-fibers n f
→ has-conn-fibers n g
→ has-conn-fibers n (g ∘ f)
∘-conn {n = n} f g cf cg =
conn-in (λ P → conn-extend cg P ∘ conn-extend cf (P ∘ g) , lemma P)
where
lemma : ∀ P h x → conn-extend cg P (conn-extend cf (P ∘ g) h) (g (f x)) == h x
lemma P h x =
conn-extend cg P (conn-extend cf (P ∘ g) h) (g (f x))
=⟨ conn-extend-β cg P (conn-extend cf (P ∘ g) h) (f x) ⟩
conn-extend cf (P ∘ g) h (f x)
=⟨ conn-extend-β cf (P ∘ g) h x ⟩
h x
=∎