{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Paths
module lib.types.Pi where
Π-level : ∀ {i j} {A : Type i} {B : A → Type j} {n : ℕ₋₂}
→ (((x : A) → has-level n (B x)) → has-level n (Π A B))
Π-level {n = ⟨-2⟩} p =
((λ x → fst (p x)) , (λ f → λ= (λ x → snd (p x) (f x))))
Π-level {n = S n} p = λ f g →
equiv-preserves-level λ=-equiv
(Π-level (λ x → p x (f x) (g x)))
module _ {i j} {A : Type i} {B : A → Type j} where
abstract
Π-is-prop : ((x : A) → is-prop (B x)) → is-prop (Π A B)
Π-is-prop = Π-level
Π-is-set : ((x : A) → is-set (B x)) → is-set (Π A B)
Π-is-set = Π-level
module _ {i j} {A : Type i} {B : Type j} where
abstract
→-level : {n : ℕ₋₂} → (has-level n B → has-level n (A → B))
→-level p = Π-level (λ _ → p)
→-is-set : is-set B → is-set (A → B)
→-is-set = →-level
→-is-prop : is-prop B → is-prop (A → B)
→-is-prop = →-level
equiv-Π-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) {h : A → B}
→ is-equiv h → Π A (P ∘ h) ≃ Π B P
equiv-Π-l {A = A} {B = B} P {h = h} e = equiv f g f-g g-f where
w : A ≃ B
w = (h , e)
f : Π A (P ∘ h) → Π B P
f u b = transport P (<–-inv-r w b) (u (<– w b))
g : Π B P → Π A (P ∘ h)
g v a = v (–> w a)
f-g : ∀ v → f (g v) == v
f-g v = λ= λ b → to-transp (apd v (<–-inv-r w b))
g-f : ∀ u → g (f u) == u
g-f u = λ= λ a → to-transp $ transport (λ p → u _ == _ [ P ↓ p ])
(is-equiv.adj e a)
(↓-ap-in P (–> w)
(apd u $ <–-inv-l w a))
equiv-Π-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (∀ x → B x ≃ C x) → Π A B ≃ Π A C
equiv-Π-r {A = A} {B = B} {C = C} k = equiv f g f-g g-f
where f : Π A B → Π A C
f c x = –> (k x) (c x)
g : Π A C → Π A B
g d x = <– (k x) (d x)
f-g : ∀ d → f (g d) == d
f-g d = λ= (λ x → <–-inv-r (k x) (d x))
g-f : ∀ c → g (f c) == c
g-f c = λ= (λ x → <–-inv-l (k x) (c x))
module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁}
{B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where
equiv-Π : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Π A₀ B₀ ≃ Π A₁ B₁
equiv-Π u v = Π A₀ B₀ ≃⟨ equiv-Π-l _ (snd (u ⁻¹)) ⁻¹ ⟩
Π A₁ (B₀ ∘ <– u) ≃⟨ equiv-Π-r v ⟩
Π A₁ B₁ ≃∎
equiv-Π' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Π A₀ B₀ ≃ Π A₁ B₁
equiv-Π' u v = Π A₀ B₀ ≃⟨ equiv-Π-r v ⟩
Π A₀ (B₁ ∘ –> u) ≃⟨ equiv-Π-l _ (snd u) ⟩
Π A₁ B₁ ≃∎
module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
where
↓-Π-in : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
→ (u == u' [ (λ x → Π (B x) (C x)) ↓ p ])
↓-Π-in {p = idp} f = λ= (λ x → f (idp {a = x}))
↓-Π-out : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ (u == u' [ (λ x → Π (B x) (C x)) ↓ p ])
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
↓-Π-out {p = idp} q idp = app= q _
↓-Π-β : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ (f : {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
→ {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ ↓-Π-out (↓-Π-in f) q == f q
↓-Π-β {p = idp} f idp = app=-β (λ x → f (idp {a = x})) _
module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} {x x' : A}
{p : x == x'} {u : B x → C} {u' : B x' → C} where
↓-app→cst-in :
({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t')
→ (u == u' [ (λ x → B x → C) ↓ p ])
↓-app→cst-in f = ↓-Π-in (λ q → ↓-cst-in (f q))
↓-app→cst-out :
(u == u' [ (λ x → B x → C) ↓ p ])
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t')
↓-app→cst-out r q = ↓-cst-out (↓-Π-out r q)
↓-app→cst-β :
(f : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t'))
→ {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ ↓-app→cst-out (↓-app→cst-in f) q == f q
↓-app→cst-β f q =
↓-app→cst-out (↓-app→cst-in f) q
=⟨ idp ⟩
↓-cst-out (↓-Π-out (↓-Π-in (λ qq → ↓-cst-in (f qq))) q)
=⟨ ↓-Π-β (λ qq → ↓-cst-in (f qq)) q |in-ctx
↓-cst-out ⟩
↓-cst-out (↓-cst-in {p = pair= p q} (f q))
=⟨ ↓-cst-β (pair= p q) (f q) ⟩
f q ∎
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
{x x' : A} {p : x == x'} {u : B x → C x} {u' : B x' → C x'} where
↓-→-in :
({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ C ↓ p ])
→ (u == u' [ (λ x → B x → C x) ↓ p ])
↓-→-in f = ↓-Π-in (λ q → ↓-cst2-in p q (f q))
↓-→-out :
(u == u' [ (λ x → B x → C x) ↓ p ])
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ C ↓ p ])
↓-→-out r q = ↓-cst2-out p q (↓-Π-out r q)
module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where
↓-cst→app-in : {x x' : A} {p : x == x'}
{u : (b : B) → C x b} {u' : (b : B) → C x' b}
→ ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ])
→ (u == u' [ (λ x → (b : B) → C x b) ↓ p ])
↓-cst→app-in {p = idp} f = λ= f
↓-cst→app-out : {x x' : A} {p : x == x'}
{u : (b : B) → C x b} {u' : (b : B) → C x' b}
→ (u == u' [ (λ x → (b : B) → C x b) ↓ p ])
→ ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ])
↓-cst→app-out {p = idp} q = app= q
split-ap2 : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k} (f : Σ A B → C)
{x y : A} (p : x == y)
{u : B x} {v : B y} (q : u == v [ B ↓ p ])
→ ap f (pair= p q) == ↓-app→cst-out (apd (curry f) p) q
split-ap2 f idp idp = idp
apd-∘ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
(g : {a : A} → Π (B a) (C a)) (f : Π A B) {x y : A} (p : x == y)
{q : f x == f y [ B ↓ p ]} (r : apd f p == q)
→ apd (g ∘ f) p == ↓-apd-out C r (apd↓ g q)
apd-∘ g f idp idp = idp
apd-∘' : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
(g : {a : A} → B a → C a) (f : Π A B) {x y : A} (p : x == y)
→ apd (g ∘ f) p == ap↓ g (apd f p)
apd-∘' g f idp = idp
∘'-apd : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
(g : {a : A} → B a → C a) (f : Π A B) {x y : A} (p : x == y)
→ ap↓ g (apd f p) == apd (g ∘ f) p
∘'-apd g f idp = idp
module Ap↓-swap! {i j k ℓ} {A : Type i} {B : Type j} {C : Type k}
{D : Type ℓ} (h : C → D) (f : A → C) (g : B → C)
{a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
(r : f a == g b') (s : f a' == g b)
(t : r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ])
where
lhs : ap h (ap f p ∙' s) == ap (h ∘ f) p ∙' ap h s
lhs = ap-∙' h (ap f p) s ∙ (ap (λ u → u ∙' ap h s) (∘-ap h f p))
rhs : ap h (s ∙ ap g q) == ap h s ∙ ap (h ∘ g) q
rhs = ap-∙ h s (ap g q) ∙ (ap (λ u → ap h s ∙ u) (∘-ap h g q))
β : ap↓ (ap h) (↓-swap! f g r s t) ==
lhs ◃ ↓-swap! (h ∘ f) (h ∘ g) (ap h r) (ap h s) (ap↓ (ap h) t ▹ rhs)
β with a | a' | p | b | b' | q | r | s | t
β | a | .a | idp | b | .b | idp | r | s | t = coh r s t where
T : {x x' : C} (r s : x == x') (t : r == s ∙ idp) → Type _
T r s t =
ap (ap h) (∙'-unit-l s ∙ ! (∙-unit-r s) ∙ ! t) ==
(ap-∙' h idp s ∙ idp)
∙
(∙'-unit-l (ap h s) ∙
! (∙-unit-r (ap h s)) ∙
!
(ap (ap h) t ∙'
(ap-∙ h s idp ∙ idp)))
coh' : {x x' : C} {r s : x == x'} (t : r == s) → T r s (t ∙ ! (∙-unit-r s))
coh' {r = idp} {s = .idp} idp = idp
coh : {x x' : C} (r s : x == x') (t : r == s ∙ idp) → T r s t
coh r s t = transport (λ t → T r s t) (coh2 t (∙-unit-r s)) (coh' (t ∙ ∙-unit-r s)) where
coh2 : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → (p ∙ q) ∙ ! q == p
coh2 idp idp = idp
∙-app= : ∀ {i j} {A : Type i} {B : A → Type j} {f g h : Π A B}
(α : f == g) (β : g == h)
→ α ∙ β == λ= (λ x → app= α x ∙ app= β x)
∙-app= idp β = λ=-η β
∙-λ= : ∀ {i j} {A : Type i} {B : A → Type j} {f g h : Π A B}
(α : (x : A) → f x == g x) (β : (x : A) → g x == h x)
→ λ= α ∙ λ= β == λ= (λ x → α x ∙ β x)
∙-λ= α β = ∙-app= (λ= α) (λ= β)
∙ ap λ= (λ= (λ x → ap (λ w → w ∙ app= (λ= β) x) (app=-β α x)
∙ ap (λ w → α x ∙ w) (app=-β β x)))