{-# OPTIONS --without-K #-}

open import lib.Base
open import lib.PathGroupoid

module lib.PathFunctor {i} {A : Type i} where

{- Nondependent stuff -}
module _ {j} {B : Type j} (f : A  B) where

  !-ap : {x y : A} (p : x == y)
     ! (ap f p) == ap f (! p)
  !-ap idp = idp

  ap-! : {x y : A} (p : x == y)
     ap f (! p) == ! (ap f p)
  ap-! idp = idp

  ∙-ap : {x y z : A} (p : x == y) (q : y == z)
     ap f p  ap f q == ap f (p  q)
  ∙-ap idp q = idp

  ap-∙ : {x y z : A} (p : x == y) (q : y == z)
     ap f (p  q) == ap f p  ap f q
  ap-∙ idp q = idp

  ∙'-ap : {x y z : A} (p : x == y) (q : y == z)
     ap f p ∙' ap f q == ap f (p ∙' q)
  ∙'-ap p idp = idp

  ap-∙' : {x y z : A} (p : x == y) (q : y == z)
     ap f (p ∙' q) == ap f p ∙' ap f q
  ap-∙' p idp = idp

{- Dependent stuff -}
module _ {j} {B : A  Type j} (f : Π A B) where

  apd-∙ : {x y z : A} (p : x == y) (q : y == z)
     apd f (p  q) == apd f p ∙ᵈ apd f q
  apd-∙ idp idp = idp

  apd-∙' : {x y z : A} (p : x == y) (q : y == z)
     apd f (p ∙' q) == apd f p ∙'ᵈ apd f q
  apd-∙' idp idp = idp

{- Over stuff -}
module _ {j k} {B : A  Type j} {C : A  Type k} (f : {a : A}  B a  C a) where

  ap↓-◃ : {x y z : A} {u : B x} {v : B y} {w : B z}
    {p : x == y} {p' : y == z} (q : u == v [ B  p ]) (r : v == w [ B  p' ])
     ap↓ f (q  r) == ap↓ f q  ap↓ f r
  ap↓-◃ {p = idp} {p' = idp} idp idp = idp

  ap↓-▹! : {x y z : A} {u : B x} {v : B y} {w : B z}
    {p : x == y} {p' : z == y} (q : u == v [ B  p ]) (r : w == v [ B  p' ])
     ap↓ f (q ▹! r) == ap↓ f q ▹! ap↓ f r
  ap↓-▹! {p = idp} {p' = idp} idp idp = idp

{- Fuse and unfuse -}

∘-ap :  {j k} {B : Type j} {C : Type k} (g : B  C) (f : A  B)
  {x y : A} (p : x == y)  ap g (ap f p) == ap (g  f) p
∘-ap f g idp = idp

ap-∘ :  {j k} {B : Type j} {C : Type k} (g : B  C) (f : A  B)
  {x y : A} (p : x == y)  ap (g  f) p == ap g (ap f p)
ap-∘ f g idp = idp

ap-cst :  {j} {B : Type j} (b : B) {x y : A} (p : x == y)
   ap (cst b) p == idp
ap-cst b idp = idp

ap-idf : {u v : A} (p : u == v)  ap (idf A) p == p
ap-idf idp = idp

{- Functoriality of [coe] -}

coe-∙ : {B C : Type i} (p : A == B) (q : B == C) (a : A)
   coe (p  q) a == coe q (coe p a)
coe-∙ idp q a = idp

coe-! : {B : Type i} (p : A == B)  coe (! p) == coe! p
coe-! idp = idp

coe!-inv-r : {B : Type i} (p : A == B) (b : B)
   coe p (coe! p b) == b
coe!-inv-r idp b = idp

coe!-inv-l : {B : Type i} (p : A == B) (a : A)
   coe! p (coe p a) == a
coe!-inv-l idp a = idp

coe-ap-! :  {j} (P : A  Type j) {a b : A} (p : a == b)
  (x : P b)
   coe (ap P (! p)) x == coe! (ap P p) x
coe-ap-! P idp x = idp

{- Functoriality of transport -}
trans-∙ :  {j} {B : A  Type j} {x y z : A}
  (p : x == y) (q : y == z) (b : B x)
   transport B (p  q) b == transport B q (transport B p b)
trans-∙ idp _ _ = idp

{- Naturality of homotopies -}

htpy-natural :  {j} {B : Type j} {x y : A} {f g : A  B} 
  (p :  x  (f x == g x)) (q : x == y)  ap f q  p y == p x  ap g q
htpy-natural p idp = ! (∙-unit-r _)

htpy-natural-toid : {f : A  A}
  (p :  (x : A)  f x == x)  (∀ x  ap f (p x) == p (f x))
htpy-natural-toid {f = f} p x = anti-whisker-right (p x) $ 
  htpy-natural p (p x)  ap  q  p (f x)  q) (ap-idf (p x))

-- unsure where this belongs
trans-pathfrom :  {a x y : A} (p : x == y) (q : a == x)
   transport  x  a == x) p q == q  p
trans-pathfrom idp q = ! (∙-unit-r q)