{-# OPTIONS --without-K #-}
open import lib.Basics
module lib.types.Sigma where
_×_ : ∀ {i j} (A : Type i) (B : Type j) → Type (lmax i j)
A × B = Σ A (λ _ → B)
module _ {i j} {A : Type i} {B : A → Type j} where
pair : (a : A) (b : B a) → Σ A B
pair a b = (a , b)
fst= : {ab a'b' : Σ A B} (p : ab == a'b') → (fst ab == fst a'b')
fst= = ap fst
snd= : {ab a'b' : Σ A B} (p : ab == a'b')
→ (snd ab == snd a'b' [ B ↓ fst= p ])
snd= {._} {_} idp = idp
fst=-β : {a a' : A} (p : a == a')
{b : B a} {b' : B a'} (q : b == b' [ B ↓ p ])
→ fst= (pair= p q) == p
fst=-β idp idp = idp
snd=-β : {a a' : A} (p : a == a')
{b : B a} {b' : B a'} (q : b == b' [ B ↓ p ])
→ snd= (pair= p q) == q [ (λ v → b == b' [ B ↓ v ]) ↓ fst=-β p q ]
snd=-β idp idp = idp
pair=-η : {ab a'b' : Σ A B} (p : ab == a'b')
→ p == pair= (fst= p) (snd= p)
pair=-η {._} {_} idp = idp
pair== : {a a' : A} {p p' : a == a'} (α : p == p')
{b : B a} {b' : B a'} {q : b == b' [ B ↓ p ]} {q' : b == b' [ B ↓ p' ]}
(β : q == q' [ (λ u → b == b' [ B ↓ u ]) ↓ α ])
→ pair= p q == pair= p' q'
pair== idp idp = idp
module _ {i j} {A : Type i} {B : Type j} where
fst×= : {ab a'b' : A × B} (p : ab == a'b') → (fst ab == fst a'b')
fst×= = ap fst
snd×= : {ab a'b' : A × B} (p : ab == a'b')
→ (snd ab == snd a'b')
snd×= = ap snd
fst×=-β : {a a' : A} (p : a == a')
{b b' : B} (q : b == b')
→ fst×= (pair×= p q) == p
fst×=-β idp idp = idp
snd×=-β : {a a' : A} (p : a == a')
{b b' : B} (q : b == b')
→ snd×= (pair×= p q) == q
snd×=-β idp idp = idp
module _ {i j} {A : Type i} {B : A → Type j} where
=Σ : (x y : Σ A B) → Type (lmax i j)
=Σ (a , b) (a' , b') = Σ (a == a') (λ p → b == b' [ B ↓ p ])
=Σ-eqv : (x y : Σ A B) → (=Σ x y) ≃ (x == y)
=Σ-eqv x y =
equiv (λ pq → pair= (fst pq) (snd pq)) (λ p → fst= p , snd= p)
(λ p → ! (pair=-η p))
(λ pq → pair= (fst=-β (fst pq) (snd pq)) (snd=-β (fst pq) (snd pq)))
=Σ-path : (x y : Σ A B) → (=Σ x y) == (x == y)
=Σ-path x y = ua (=Σ-eqv x y)
Σ= : ∀ {i j} {A A' : Type i} (p : A == A') {B : A → Type j} {B' : A' → Type j}
(q : B == B' [ (λ X → (X → Type j)) ↓ p ]) → Σ A B == Σ A' B'
Σ= idp idp = idp
abstract
Σ-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {P : A → Type j}
→ (has-level n A → ((x : A) → has-level n (P x))
→ has-level n (Σ A P))
Σ-level {n = ⟨-2⟩} p q =
((fst p , (fst (q (fst p)))) ,
(λ y → pair= (snd p _) (from-transp! _ _ (snd (q _) _))))
Σ-level {n = S n} p q = λ x y → equiv-preserves-level (=Σ-eqv x y)
(Σ-level (p _ _)
(λ _ → equiv-preserves-level ((to-transp-equiv _ _)⁻¹) (q _ _ _)))
×-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j}
→ (has-level n A → has-level n B → has-level n (A × B))
×-level pA pB = Σ-level pA (λ x → pB)
equiv-Σ-fst : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) {h : A → B}
→ is-equiv h → (Σ A (P ∘ h)) ≃ (Σ B P)
equiv-Σ-fst {A = A} {B = B} P {h = h} e = equiv f g f-g g-f
where f : Σ A (P ∘ h) → Σ B P
f (a , r) = (h a , r)
g : Σ B P → Σ A (P ∘ h)
g (b , s) = (is-equiv.g e b , transport P (! (is-equiv.f-g e b)) s)
f-g : ∀ y → f (g y) == y
f-g (b , s) = pair= (is-equiv.f-g e b) (trans-↓ P (is-equiv.f-g e b) s)
g-f : ∀ x → g (f x) == x
g-f (a , r) =
pair= (is-equiv.g-f e a)
(transport (λ q → transport P (! q) r == r [ P ∘ h ↓ is-equiv.g-f e a ])
(is-equiv.adj e a)
(trans-ap-↓ P h (is-equiv.g-f e a) r) )
equiv-Σ-snd : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (∀ x → B x ≃ C x) → Σ A B ≃ Σ A C
equiv-Σ-snd {A = A} {B = B} {C = C} k = equiv f g f-g g-f
where f : Σ A B → Σ A C
f (a , b) = (a , fst (k a) b)
g : Σ A C → Σ A B
g (a , c) = (a , is-equiv.g (snd (k a)) c)
f-g : ∀ p → f (g p) == p
f-g (a , c) = pair= idp (is-equiv.f-g (snd (k a)) c)
g-f : ∀ p → g (f p) == p
g-f (a , b) = pair= idp (is-equiv.g-f (snd (k a)) b)
Σ-∙' : ∀ {i j} {A : Type i} {B : A → Type j}
{x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}
(q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ])
→ (pair= p q ∙' pair= p' r) == pair= (p ∙' p') (q ∙'ᵈ r)
Σ-∙' {p = idp} {p' = idp} q idp = idp
Σ-∙ : ∀ {i j} {A : Type i} {B : A → Type j}
{x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}
(q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ])
→ (pair= p q ∙ pair= p' r) == pair= (p ∙ p') (q ∙ᵈ r)
Σ-∙ {p = idp} {p' = idp} idp r = idp
×-∙' : ∀ {i j} {A : Type i} {B : Type j}
{x y z : A} (p : x == y) (p' : y == z)
{u v w : B} (q : u == v) (q' : v == w)
→ (pair×= p q ∙' pair×= p' q') == pair×= (p ∙' p') (q ∙' q')
×-∙' idp idp q idp = idp
×-∙ : ∀ {i j} {A : Type i} {B : Type j}
{x y z : A} (p : x == y) (p' : y == z)
{u v w : B} (q : u == v) (q' : v == w)
→ (pair×= p q ∙ pair×= p' q') == pair×= (p ∙ p') (q ∙ q')
×-∙ idp idp idp r = idp
ap-cst,id : ∀ {i j} {A : Type i} (B : A → Type j)
{a : A} {x y : B a} (p : x == y)
→ ap (λ x → _,_ {B = B} a x) p == pair= idp p
ap-cst,id B idp = idp