{-# OPTIONS --without-K #-}
open import lib.Base
open import lib.PathGroupoid
open import lib.Equivalences
open import lib.Univalence
open import lib.Funext
module lib.PathOver where
module _ {i j} {A : Type i} {B : Type j} where
↓-cst-in : {x y : A} {p : x == y} {u v : B}
→ u == v
→ u == v [ (λ _ → B) ↓ p ]
↓-cst-in {p = idp} q = q
↓-cst-out : {x y : A} {p : x == y} {u v : B}
→ u == v [ (λ _ → B) ↓ p ]
→ u == v
↓-cst-out {p = idp} q = q
↓-cst-β : {x y : A} (p : x == y) {u v : B} (q : u == v)
→ (↓-cst-out (↓-cst-in {p = p} q) == q)
↓-cst-β idp q = idp
↓-cst-in-∙ : {x y z : A} (p : x == y) (q : y == z) {u v w : B}
(p' : u == v) (q' : v == w)
→ ↓-cst-in {p = p ∙ q} (p' ∙ q')
== ↓-cst-in {p = p} p' ∙ᵈ ↓-cst-in {p = q} q'
↓-cst-in-∙ idp idp idp idp = idp
↓-cst-in2 : {a a' : A} {u v : B}
{p₀ : a == a'} {p₁ : a == a'} {q₀ q₁ : u == v} {q : p₀ == p₁}
→ q₀ == q₁
→ (↓-cst-in {p = p₀} q₀ == ↓-cst-in {p = p₁} q₁ [ (λ p → u == v [ (λ _ → B) ↓ p ]) ↓ q ])
↓-cst-in2 {p₀ = idp} {p₁ = .idp} {q₀} {q₁} {idp} k = k
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where
↓-cst2-in : {x y : A} (p : x == y) {b : C x} {c : C y}
(q : b == c [ C ↓ p ]) {u : B x} {v : B y}
→ u == v [ B ↓ p ]
→ u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ]
↓-cst2-in idp idp r = r
↓-cst2-out : {x y : A} (p : x == y) {b : C x} {c : C y}
(q : b == c [ C ↓ p ]) {u : B x} {v : B y}
→ u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ]
→ u == v [ B ↓ p ]
↓-cst2-out idp idp r = r
module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} where
↓-cst2×-in : {x y : A} (p : x == y) {b c : C}
(q : b == c) {u : B x} {v : B y}
→ u == v [ B ↓ p ]
→ u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ]
↓-cst2×-in idp idp r = r
↓-cst2×-out : {x y : A} (p : x == y) {b c : C}
(q : b == c) {u : B x} {v : B y}
→ u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ]
→ u == v [ B ↓ p ]
↓-cst2×-out idp idp r = r
module _ {i j k} {A : Type i} {B : Type j} (C : B → Type k) (f : A → B) where
↓-ap-in : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)}
→ u == v [ C ∘ f ↓ p ]
→ u == v [ C ↓ ap f p ]
↓-ap-in {p = idp} idp = idp
↓-ap-out : {x y : A} (p : x == y) {u : C (f x)} {v : C (f y)}
→ u == v [ C ↓ ap f p ]
→ u == v [ C ∘ f ↓ p ]
↓-ap-out idp idp = idp
apd↓ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
(f : {a : A} (b : B a) → C a b) {x y : A} {p : x == y}
{u : B x} {v : B y} (q : u == v [ B ↓ p ])
→ f u == f v [ (λ xy → C (fst xy) (snd xy)) ↓ pair= p q ]
apd↓ f {p = idp} idp = idp
apd↓=apd : ∀ {i j} {A : Type i} {B : A → Type j} (f : (a : A) → B a) {x y : A}
(p : x == y) → (apd f p == ↓-ap-out _ _ p (apd↓ {A = Unit} f {p = idp} p))
apd↓=apd f idp = idp
module _ {i j} where
↓-fst×-out : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B')
{u : A} {v : A'}
→ u == v [ fst ↓ pair×= p q ]
→ u == v [ (λ X → X) ↓ p ]
↓-fst×-out idp idp h = h
↓-snd×-in : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B')
{u : B} {v : B'}
→ u == v [ (λ X → X) ↓ q ]
→ u == v [ snd ↓ pair×= p q ]
↓-snd×-in idp idp h = h
module _ {i j} {A : Type i} where
from-transp : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'}
→ (transport B p u == v)
→ (u == v [ B ↓ p ])
from-transp B idp idp = idp
to-transp : {B : A → Type j} {a a' : A} {p : a == a'}
{u : B a} {v : B a'}
→ (u == v [ B ↓ p ])
→ (transport B p u == v)
to-transp {p = idp} idp = idp
to-transp-β : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'}
(q : transport B p u == v)
→ to-transp (from-transp B p q) == q
to-transp-β B idp idp = idp
to-transp-η : {B : A → Type j} {a a' : A} {p : a == a'}
{u : B a} {v : B a'}
(q : u == v [ B ↓ p ])
→ from-transp B p (to-transp q) == q
to-transp-η {p = idp} idp = idp
to-transp-equiv : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (transport B p u == v)
to-transp-equiv B p =
equiv to-transp (from-transp B p) (to-transp-β B p) (to-transp-η)
from-transp! : (B : A → Type j)
{a a' : A} (p : a == a')
{u : B a} {v : B a'}
→ (u == transport! B p v)
→ (u == v [ B ↓ p ])
from-transp! B idp idp = idp
to-transp! : {B : A → Type j}
{a a' : A} {p : a == a'}
{u : B a} {v : B a'}
→ (u == v [ B ↓ p ])
→ (u == transport! B p v)
to-transp! {p = idp} idp = idp
to-transp!-β : (B : A → Type j)
{a a' : A} (p : a == a')
{u : B a} {v : B a'}
(q : u == transport! B p v)
→ to-transp! (from-transp! B p q) == q
to-transp!-β B idp idp = idp
to-transp!-η : {B : A → Type j} {a a' : A} {p : a == a'}
{u : B a} {v : B a'}
(q : u == v [ B ↓ p ])
→ from-transp! B p (to-transp! q) == q
to-transp!-η {p = idp} idp = idp
to-transp!-equiv : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (u == transport! B p v)
to-transp!-equiv B p =
equiv to-transp! (from-transp! B p) (to-transp!-β B p) (to-transp!-η)
apd=cst-in : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
{a a' : A} {p : a == a'} {q : f a == f a'}
→ apd f p == ↓-cst-in q → ap f p == q
apd=cst-in {p = idp} x = x
↓-apd-out : ∀ {i j k} {A : Type i} {B : A → Type j} (C : (a : A) → B a → Type k)
{f : Π A B} {x y : A} {p : x == y}
{q : f x == f y [ B ↓ p ]} (r : apd f p == q)
{u : C x (f x)} {v : C y (f y)}
→ u == v [ uncurry C ↓ pair= p q ]
→ u == v [ (λ z → C z (f z)) ↓ p ]
↓-apd-out C {p = idp} idp idp = idp
to-transp-weird : ∀ {i j} {A : Type i} {B : A → Type j}
{u v : A} {d : B u} {d' d'' : B v} {p : u == v}
(q : d == d' [ B ↓ p ]) (r : transport B p d == d'')
→ (from-transp B p r ∙'ᵈ (! r ∙ to-transp q)) == q
to-transp-weird {p = idp} idp idp = idp
module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → C) (g : B → C)
where
↓-swap : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
(r : f a == g b') (s : f a' == g b)
→ (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ])
→ (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ])
↓-swap {p = idp} {q = idp} r s t = (! t) ∙ ∙'-unit-l s ∙ ! (∙-unit-r s)
↓-swap! : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
(r : f a == g b') (s : f a' == g b)
→ (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ])
→ (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ])
↓-swap! {p = idp} {q = idp} r s t = ∙'-unit-l s ∙ ! (∙-unit-r s) ∙ (! t)
↓-swap-β : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
(r : f a == g b') (s : f a' == g b)
(t : ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ])
→ ↓-swap! r s (↓-swap r s t) == t
↓-swap-β {p = idp} {q = idp} r s t = coh (∙'-unit-l s) (∙-unit-r s) t where
coh : ∀ {i} {X : Type i} {x y z t : X} (p : x == y) (q : z == y) (r : x == t)
→ p ∙ ! q ∙ ! (! r ∙ p ∙ ! q) == r
coh idp idp idp = idp
↓-→-is-square : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
{x y : A} (f : B x → C x) (g : B y → C y) (p : x == y)
→ ((transport C p ∘ f) == (g ∘ transport B p))
== (f == g [ (λ z → B z → C z) ↓ p ])
↓-→-is-square _ _ idp = idp
trans-↓ : ∀ {i j} {A : Type i} (P : A → Type j) {a₁ a₂ : A}
(p : a₁ == a₂) (y : P a₂) → transport P (! p) y == y [ P ↓ p ]
trans-↓ _ idp _ = idp
trans-ap-↓ : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) (h : A → B)
{a₁ a₂ : A} (p : a₁ == a₂) (y : P (h a₂))
→ transport P (! (ap h p)) y == y [ P ∘ h ↓ p ]
trans-ap-↓ _ _ idp _ = idp