{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Sigma
open import lib.types.Pi
open import lib.types.Paths
module lib.Equivalences2 where
module _ {i j k} {A : Type i} {B : Type j} {C : Type k}
{h : A → B} (e : is-equiv h) where
pre∘-is-equiv : is-equiv (λ (k : C → A) → h ∘ k)
pre∘-is-equiv = is-eq f g f-g g-f
where f = λ k → h ∘ k
g = λ k → is-equiv.g e ∘ k
f-g = λ k → ap (λ q → q ∘ k) (λ= $ is-equiv.f-g e)
g-f = λ k → ap (λ q → q ∘ k) (λ= $ is-equiv.g-f e)
post∘-is-equiv : is-equiv (λ (k : B → C) → k ∘ h)
post∘-is-equiv = is-eq f g f-g g-f
where f = λ k → k ∘ h
g = λ k → k ∘ is-equiv.g e
f-g = λ k → ap (λ q → λ x → k (q x)) (λ= $ is-equiv.g-f e)
g-f = λ k → ap (λ q → λ x → k (q x)) (λ= $ is-equiv.f-g e)
is-contr-map : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
→ Type (lmax i j)
is-contr-map {A = A} {B = B} f = (y : B) → is-contr (Σ A (λ x → f x == y))
equiv-is-contr-map : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
→ (is-equiv f → is-contr-map f)
equiv-is-contr-map e y =
equiv-preserves-level ((equiv-Σ-fst (λ z → z == y) e) ⁻¹) (pathto-is-contr y)
fiber=-eqv : ∀ {i j} {A : Type i} {B : Type j} {h : A → B} {y : B}
(r s : Σ A (λ x → h x == y))
→ (r == s) ≃ Σ (fst r == fst s) (λ γ → ap h γ ∙ snd s == snd r)
fiber=-eqv r s = equiv-Σ-snd (λ γ → !-equiv ∘e (↓-app=cst-eqv ⁻¹)) ∘e ((=Σ-eqv r s)⁻¹)
module _ {i j} {A : Type i} {B : Type j} where
linv : (A → B) → Type (lmax i j)
linv f = Σ (B → A) (λ g → (∀ x → g (f x) == x))
rinv : (A → B) → Type (lmax i j)
rinv f = Σ (B → A) (λ g → (∀ y → f (g y) == y))
lcoh : (f : A → B) → linv f → Type (lmax i j)
lcoh f (g , g-f) = Σ (∀ y → f (g y) == y)
(λ f-g → ∀ y → ap g (f-g y) == g-f (g y))
rcoh : (f : A → B) → rinv f → Type (lmax i j)
rcoh f (g , f-g) = Σ (∀ x → g (f x) == x)
(λ g-f → ∀ x → ap f (g-f x) == f-g (f x))
module _ {i j} {A : Type i} {B : Type j} {f : A → B} (e : is-equiv f) where
equiv-linv-is-contr : is-contr (linv f)
equiv-linv-is-contr = equiv-preserves-level (equiv-Σ-snd (λ _ → λ=-equiv ⁻¹))
(equiv-is-contr-map (post∘-is-equiv e) (idf A))
equiv-rinv-is-contr : is-contr (rinv f)
equiv-rinv-is-contr = equiv-preserves-level (equiv-Σ-snd (λ _ → λ=-equiv ⁻¹))
(equiv-is-contr-map (pre∘-is-equiv e) (idf B))
module _ {i j} {A : Type i} {B : Type j} {f : A → B} where
rcoh-eqv : (v : rinv f)
→ rcoh f v ≃ Π A (λ x → (fst v (f x) , snd v (f x)) == (x , idp {a = f x}))
rcoh-eqv v = equiv-Π-r (λ x → ((fiber=-eqv {h = f} _ _)⁻¹) ∘e apply-unit-r x) ∘e choice ⁻¹
where
apply-unit-r : ∀ x → Σ _ (λ γ → ap f γ == _) ≃ Σ _ (λ γ → ap f γ ∙ idp == _)
apply-unit-r x = equiv-Σ-snd $
λ γ → coe-equiv (ap (λ q → q == snd v (f x)) (! (∙-unit-r _)))
lcoh-eqv : (v : linv f)
→ lcoh f v ≃ Π B (λ y → (f (fst v y) , snd v (fst v y)) == (y , idp))
lcoh-eqv v = equiv-Π-r (λ y → ((fiber=-eqv {h = fst v} _ _)⁻¹) ∘e apply-unit-r y) ∘e choice ⁻¹
where
apply-unit-r : ∀ y → Σ _ (λ γ → ap (fst v) γ == _) ≃ Σ _ (λ γ → ap (fst v) γ ∙ idp == _)
apply-unit-r y = equiv-Σ-snd $
λ γ → coe-equiv (ap (λ q → q == snd v (fst v y)) (! (∙-unit-r _)))
equiv-rcoh-is-contr : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
(e : is-equiv f) → (v : rinv f) → is-contr (rcoh f v)
equiv-rcoh-is-contr {f = f} e v = equiv-preserves-level ((rcoh-eqv v)⁻¹)
(Π-level (λ x → =-preserves-level ⟨-2⟩ (equiv-is-contr-map e (f x))))
rinv-and-rcoh-eqv-is-equiv : ∀ {i j} {A : Type i} {B : Type j} {h : A → B}
→ Σ (rinv h) (rcoh h) ≃ is-equiv h
rinv-and-rcoh-eqv-is-equiv {h = h} = equiv f g (λ _ → idp) (λ _ → idp)
where f : Σ (rinv h) (rcoh h) → is-equiv h
f s = record {g = fst (fst s); f-g = snd (fst s);
g-f = fst (snd s); adj = snd (snd s)}
g : is-equiv h → Σ (rinv h) (rcoh h)
g t = ((is-equiv.g t , is-equiv.f-g t) , (is-equiv.g-f t , is-equiv.adj t))
is-equiv-is-prop : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
→ is-prop (is-equiv f)
is-equiv-is-prop _ = inhab-to-contr-is-prop $ λ e →
equiv-preserves-level rinv-and-rcoh-eqv-is-equiv
(Σ-level (equiv-rinv-is-contr e) (equiv-rcoh-is-contr e))
∘e-unit-r : ∀ {i} {A B : Type i} (e : A ≃ B) → (e ∘e ide A) == e
∘e-unit-r e =
pair= idp (prop-has-all-paths (is-equiv-is-prop (fst e)) _ _)
ua-∘e : ∀ {i} {A B : Type i}
(e₁ : A ≃ B) {C : Type i} (e₂ : B ≃ C) → ua (e₂ ∘e e₁) == ua e₁ ∙ ua e₂
ua-∘e =
equiv-induction
(λ {A} {B} e₁ → ∀ {C} → ∀ (e₂ : B ≃ C) → ua (e₂ ∘e e₁) == ua e₁ ∙ ua e₂)
(λ A → λ e₂ → ap ua (∘e-unit-r e₂) ∙ ap (λ w → (w ∙ ua e₂)) (! (ua-η idp)))