{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Span
open import lib.types.Pointed
open import lib.types.Pushout
open import lib.types.PushoutFlattening
open import lib.types.Unit
open import lib.types.Paths
open import lib.cubical.Square
module lib.types.Suspension where
module _ {i} (A : Type i) where
suspension-span : Span
suspension-span = span Unit Unit A (λ _ → tt) (λ _ → tt)
Suspension : Type i
Suspension = Pushout suspension-span
north : Suspension
north = left tt
south : Suspension
south = right tt
merid : A → north == south
merid x = glue x
module SuspensionElim {j} {P : Suspension → Type j} (n : P north)
(s : P south) (p : (x : A) → n == s [ P ↓ merid x ])
= PushoutElim (λ _ → n) (λ _ → s) p
open SuspensionElim public using () renaming (f to Suspension-elim)
module SuspensionRec {j} {C : Type j} (n s : C) (p : A → n == s)
= PushoutRec {d = suspension-span} (λ _ → n) (λ _ → s) p
module SuspensionRecType {j} (n s : Type j) (p : A → n ≃ s)
= PushoutRecType {d = suspension-span} (λ _ → n) (λ _ → s) p
suspension-⊙span : ∀ {i} → Ptd i → ⊙Span
suspension-⊙span X =
⊙span ⊙Unit ⊙Unit X (⊙cst {X = X}) (⊙cst {X = X})
⊙Susp : ∀ {i} → Ptd i → Ptd i
⊙Susp (A , _) = ⊙[ Suspension A , north A ]
σloop : ∀ {i} (X : Ptd i) → fst X → north (fst X) == north (fst X)
σloop (_ , x₀) x = merid _ x ∙ ! (merid _ x₀)
σloop-pt : ∀ {i} {X : Ptd i} → σloop X (snd X) == idp
σloop-pt {X = (_ , x₀)} = !-inv-r (merid _ x₀)
module FlipSusp {i} {A : Type i} = SuspensionRec A
(south A) (north A) (! ∘ merid A)
flip-susp : ∀ {i} {A : Type i} → Suspension A → Suspension A
flip-susp = FlipSusp.f
⊙flip-susp : ∀ {i} (X : Ptd i) → fst (⊙Susp X ⊙→ ⊙Susp X)
⊙flip-susp X = (flip-susp , ! (merid _ (snd X)))
module _ {i j} where
module SuspFmap {A : Type i} {B : Type j} (f : A → B) =
SuspensionRec A (north B) (south B) (merid B ∘ f)
susp-fmap : {A : Type i} {B : Type j} (f : A → B)
→ (Suspension A → Suspension B)
susp-fmap = SuspFmap.f
⊙susp-fmap : {X : Ptd i} {Y : Ptd j} (f : fst (X ⊙→ Y))
→ fst (⊙Susp X ⊙→ ⊙Susp Y)
⊙susp-fmap (f , fpt) = (susp-fmap f , idp)
module _ {i} where
susp-fmap-idf : (A : Type i) → ∀ a → susp-fmap (idf A) a == a
susp-fmap-idf A = Suspension-elim _ idp idp $ λ a →
↓-='-in (ap-idf (merid _ a) ∙ ! (SuspFmap.glue-β (idf A) a))
⊙susp-fmap-idf : (X : Ptd i)
→ ⊙susp-fmap (⊙idf X) == ⊙idf (⊙Susp X)
⊙susp-fmap-idf X = ⊙λ= (susp-fmap-idf (fst X)) idp
module _ {i j} where
susp-fmap-cst : {A : Type i} {B : Type j} (b : B)
(a : Suspension A) → susp-fmap (cst b) a == north _
susp-fmap-cst b = Suspension-elim _ idp (! (merid _ b)) $ (λ a →
↓-app=cst-from-square $ SuspFmap.glue-β (cst b) a ∙v⊡ tr-square _)
⊙susp-fmap-cst : {X : Ptd i} {Y : Ptd j}
→ ⊙susp-fmap (⊙cst {X = X} {Y = Y}) == ⊙cst
⊙susp-fmap-cst = ⊙λ= (susp-fmap-cst _) idp
module _ {i j k} where
susp-fmap-∘ : {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B)
(σ : Suspension A) → susp-fmap (g ∘ f) σ == susp-fmap g (susp-fmap f σ)
susp-fmap-∘ g f = Suspension-elim _
idp
idp
(λ a → ↓-='-in $
ap-∘ (susp-fmap g) (susp-fmap f) (merid _ a)
∙ ap (ap (susp-fmap g)) (SuspFmap.glue-β f a)
∙ SuspFmap.glue-β g (f a)
∙ ! (SuspFmap.glue-β (g ∘ f) a))
⊙susp-fmap-∘ : {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y))
→ ⊙susp-fmap (g ⊙∘ f) == ⊙susp-fmap g ⊙∘ ⊙susp-fmap f
⊙susp-fmap-∘ g f = ⊙λ= (susp-fmap-∘ (fst g) (fst f)) idp
module _ {i j k} {s : Span {i} {j} {k}} where
module ExtGlue = PushoutRec {d = s} {D = Suspension (Span.C s)}
(λ _ → north _) (λ _ → south _) (merid _)
ext-glue = ExtGlue.f
module _ {i j k} {s : Span {i} {j} {k}} {x₀ : Span.A s} where
⊙ext-glue :
fst ((Pushout s , left x₀) ⊙→ (Suspension (Span.C s) , north _))
⊙ext-glue = (ext-glue , idp)