{-# OPTIONS --without-K #-}
open import lib.Base
open import lib.PathGroupoid
open import lib.PathOver
module lib.cubical.Square where
data Square {i} {A : Type i} {a₀₀ : A} : {a₀₁ a₁₀ a₁₁ : A}
→ a₀₀ == a₀₁ → a₀₀ == a₁₀ → a₀₁ == a₁₁ → a₁₀ == a₁₁ → Type i
where
ids : Square idp idp idp idp
hid-square : ∀ {i} {A : Type i} {a₀₀ a₀₁ : A} {p : a₀₀ == a₀₁}
→ Square p idp idp p
hid-square {p = idp} = ids
vid-square : ∀ {i} {A : Type i} {a₀₀ a₁₀ : A} {p : a₀₀ == a₁₀}
→ Square idp p p idp
vid-square {p = idp} = ids
square-to-disc : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋
square-to-disc ids = idp
disc-to-square : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋
→ Square p₀₋ p₋₀ p₋₁ p₁₋
disc-to-square {p₀₋ = idp} {p₋₀ = idp} {p₋₁ = idp} {p₁₋ = .idp} idp = ids
square-to-disc-β : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(α : p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋)
→ square-to-disc (disc-to-square {p₀₋ = p₀₋} {p₋₀ = p₋₀} α) == α
square-to-disc-β {p₀₋ = idp} {p₋₀ = idp} {p₋₁ = idp} {p₁₋ = .idp} idp = idp
disc-to-square-β : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ disc-to-square (square-to-disc sq) == sq
disc-to-square-β ids = idp
ap-square : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ Square (ap f p₀₋) (ap f p₋₀) (ap f p₋₁) (ap f p₁₋)
ap-square f ids = ids
ap-square-hid : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
{a₀ a₁ : A} {p : a₀ == a₁}
→ ap-square f (hid-square {p = p}) == hid-square
ap-square-hid {p = idp} = idp
ap-square-vid : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
{a₀ a₁ : A} {p : a₀ == a₁}
→ ap-square f (vid-square {p = p}) == vid-square
ap-square-vid {p = idp} = idp
module _ {i} {A : Type i} where
horiz-degen-square : {a a' : A} {p q : a == a'}
→ p == q → Square p idp idp q
horiz-degen-square {p = idp} α = disc-to-square α
horiz-degen-path : {a a' : A} {p q : a == a'}
→ Square p idp idp q → p == q
horiz-degen-path {p = idp} sq = square-to-disc sq
horiz-degen-path-β : {a a' : A} {p q : a == a'} (α : p == q)
→ horiz-degen-path (horiz-degen-square α) == α
horiz-degen-path-β {p = idp} α = square-to-disc-β α
horiz-degen-square-β : {a a' : A} {p q : a == a'} (sq : Square p idp idp q)
→ horiz-degen-square (horiz-degen-path sq) == sq
horiz-degen-square-β {p = idp} sq = disc-to-square-β sq
vert-degen-square : {a a' : A} {p q : a == a'}
→ p == q → Square idp p q idp
vert-degen-square {p = idp} α = disc-to-square (! α)
vert-degen-path : {a a' : A} {p q : a == a'}
→ Square idp p q idp → p == q
vert-degen-path {p = idp} sq = ! (square-to-disc sq)
vert-degen-path-β : {a a' : A} {p q : a == a'} (α : p == q)
→ vert-degen-path (vert-degen-square α) == α
vert-degen-path-β {p = idp} α = ap ! (square-to-disc-β (! α)) ∙ !-! α
vert-degen-square-β : {a a' : A} {p q : a == a'} (sq : Square idp p q idp)
→ vert-degen-square (vert-degen-path sq) == sq
vert-degen-square-β {p = idp} sq =
ap disc-to-square (!-! (square-to-disc sq)) ∙ disc-to-square-β sq
horiz-degen-square-idp : {a a' : A} {p : a == a'}
→ horiz-degen-square (idp {a = p}) == hid-square
horiz-degen-square-idp {p = idp} = idp
vert-degen-square-idp : {a a' : A} {p : a == a'}
→ vert-degen-square (idp {a = p}) == vid-square
vert-degen-square-idp {p = idp} = idp
module _ {i} {A : Type i} where
square-symmetry : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₋₀ p₀₋ p₁₋ p₋₁
square-symmetry ids = ids
square-sym-inv : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ square-symmetry (square-symmetry sq) == sq
square-sym-inv ids = idp
ap-square-symmetry : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ ap-square f (square-symmetry sq) == square-symmetry (ap-square f sq)
ap-square-symmetry f ids = idp
square-left-J : ∀ {i j} {A : Type i} {a₀₀ a₀₁ : A} {p₀₋ : a₀₀ == a₀₁}
(P : {a₁₀ a₁₁ : A} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ Type j)
(r : P hid-square)
{a₁₀ a₁₁ : A} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ P sq
square-left-J P r ids = r
square-top-J : ∀ {i j} {A : Type i} {a₀₀ a₁₀ : A} {p₋₀ : a₀₀ == a₁₀}
(P : {a₀₁ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ Type j)
(r : P vid-square)
{a₀₁ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ P sq
square-top-J P r ids = r
square-bot-J : ∀ {i j} {A : Type i} {a₀₁ a₁₁ : A} {p₋₁ : a₀₁ == a₁₁}
(P : {a₀₀ a₁₀ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ Type j)
(r : P vid-square)
{a₀₀ a₁₀ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ P sq
square-bot-J P r ids = r
square-right-J : ∀ {i j} {A : Type i} {a₁₀ a₁₁ : A} {p₁₋ : a₁₀ == a₁₁}
(P : {a₀₀ a₀₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ Type j)
(r : P hid-square)
{a₀₀ a₀₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ P sq
square-right-J P r ids = r
module _ where
private
lemma : ∀ {i j} {A : Type i} {a₀ : A}
(P : {a₁ : A} {p q : a₀ == a₁} → p == q → Type j)
(r : P (idp {a = idp}))
{a₁ : A} {p q : a₀ == a₁} (α : p == q)
→ P α
lemma P r {p = idp} idp = r
horiz-degen-J : ∀ {i j} {A : Type i} {a₀ : A}
(P : {a₁ : A} {p q : a₀ == a₁} → Square p idp idp q → Type j)
(r : P ids)
{a₁ : A} {p q : a₀ == a₁} (sq : Square p idp idp q)
→ P sq
horiz-degen-J P r sq = transport P
(horiz-degen-square-β sq)
(lemma (P ∘ horiz-degen-square) r (horiz-degen-path sq))
vert-degen-J : ∀ {i j} {A : Type i} {a₀ : A}
(P : {a₁ : A} {p q : a₀ == a₁} → Square idp p q idp → Type j)
(r : P ids)
{a₁ : A} {p q : a₀ == a₁} (sq : Square idp p q idp)
→ P sq
vert-degen-J P r sq = transport P
(vert-degen-square-β sq)
(lemma (P ∘ vert-degen-square) r (vert-degen-path sq))
module _ {i} {A : Type i} where
fill-square-left : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
(p₋₀ : a₀₀ == a₁₀) (p₋₁ : a₀₁ == a₁₁) (p₁₋ : a₁₀ == a₁₁)
→ Σ (a₀₀ == a₀₁) (λ p₀₋ → Square p₀₋ p₋₀ p₋₁ p₁₋)
fill-square-left idp idp p = (p , hid-square)
fill-square-top : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
(p₀₋ : a₀₀ == a₀₁) (p₋₁ : a₀₁ == a₁₁) (p₁₋ : a₁₀ == a₁₁)
→ Σ (a₀₀ == a₁₀) (λ p₋₀ → Square p₀₋ p₋₀ p₋₁ p₁₋)
fill-square-top idp p idp = (p , vid-square)
fill-square-bot : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
(p₀₋ : a₀₀ == a₀₁) (p₋₀ : a₀₀ == a₁₀) (p₁₋ : a₁₀ == a₁₁)
→ Σ (a₀₁ == a₁₁) (λ p₋₁ → Square p₀₋ p₋₀ p₋₁ p₁₋)
fill-square-bot idp p idp = (p , vid-square)
fill-square-right : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
(p₀₋ : a₀₀ == a₀₁) (p₋₀ : a₀₀ == a₁₀) (p₋₁ : a₀₁ == a₁₁)
→ Σ (a₁₀ == a₁₁) (λ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋)
fill-square-right p idp idp = (p , hid-square)
module _ {i j} {A : Type i} {B : Type j} {f g : A → B} where
↓-='-to-square : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
→ u == v [ (λ z → f z == g z) ↓ p ]
→ Square u (ap f p) (ap g p) v
↓-='-to-square {p = idp} α = horiz-degen-square α
↓-='-from-square : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
→ Square u (ap f p) (ap g p) v
→ u == v [ (λ z → f z == g z) ↓ p ]
↓-='-from-square {p = idp} sq = horiz-degen-path sq
module _ {i j} {A : Type i} {B : Type j} {f : A → B} {b : B} where
↓-cst=app-from-square : {x y : A} {p : x == y}
{u : b == f x} {v : b == f y}
→ Square u idp (ap f p) v
→ u == v [ (λ z → b == f z) ↓ p ]
↓-cst=app-from-square {p = idp} sq = horiz-degen-path sq
↓-cst=app-to-square : {x y : A} {p : x == y}
{u : b == f x} {v : b == f y}
→ u == v [ (λ z → b == f z) ↓ p ]
→ Square u idp (ap f p) v
↓-cst=app-to-square {p = idp} α = horiz-degen-square α
↓-app=cst-from-square : {x y : A} {p : x == y}
{u : f x == b} {v : f y == b}
→ Square u (ap f p) idp v
→ u == v [ (λ z → f z == b) ↓ p ]
↓-app=cst-from-square {p = idp} sq = horiz-degen-path sq
↓-app=cst-to-square : {x y : A} {p : x == y}
{u : f x == b} {v : f y == b}
→ u == v [ (λ z → f z == b) ↓ p ]
→ Square u (ap f p) idp v
↓-app=cst-to-square {p = idp} α = horiz-degen-square α
module _ {i j} {A : Type i} {B : Type j} (g : B → A) (f : A → B) where
↓-∘=idf-from-square : {x y : A} {p : x == y}
{u : g (f x) == x} {v : g (f y) == y}
→ Square u (ap g (ap f p)) p v
→ (u == v [ (λ z → g (f z) == z) ↓ p ])
↓-∘=idf-from-square {p = idp} sq = horiz-degen-path sq
↓-∘=idf-to-square : {x y : A} {p : x == y}
{u : g (f x) == x} {v : g (f y) == y}
→ (u == v [ (λ z → g (f z) == z) ↓ p ])
→ Square u (ap g (ap f p)) p v
↓-∘=idf-to-square {p = idp} α = horiz-degen-square α
module _ {i j} {A : Type i} {B : Type j} where
natural-square : {f₁ f₂ : A → B} (p : ∀ a → f₁ a == f₂ a)
{a₁ a₂ : A} (q : a₁ == a₂)
→ Square (p a₁) (ap f₁ q) (ap f₂ q) (p a₂)
natural-square p idp = hid-square
natural-square-idp : {f₁ : A → B} {a₁ a₂ : A} (q : a₁ == a₂)
→ natural-square {f₁ = f₁} (λ _ → idp) q == vid-square
natural-square-idp idp = idp
natural-square-β : {f₁ f₂ : A → B} (p : (a : A) → f₁ a == f₂ a)
{x y : A} (q : x == y)
{sq : Square (p x) (ap f₁ q) (ap f₂ q) (p y)}
→ apd p q == ↓-='-from-square sq
→ natural-square p q == sq
natural-square-β _ idp α =
! horiz-degen-square-idp ∙ ap horiz-degen-square α ∙ horiz-degen-square-β _
_⊡v_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₀₂ a₁₂ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
{q₀₋ : a₀₁ == a₀₂} {q₋₂ : a₀₂ == a₁₂} {q₁₋ : a₁₁ == a₁₂}
→ Square p₀₋ p₋₀ p₋₁ p₁₋ → Square q₀₋ p₋₁ q₋₂ q₁₋
→ Square (p₀₋ ∙ q₀₋) p₋₀ q₋₂ (p₁₋ ∙ q₁₋)
ids ⊡v sq = sq
_⊡v'_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₀₂ a₁₂ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
{q₀₋ : a₀₁ == a₀₂} {q₋₂ : a₀₂ == a₁₂} {q₁₋ : a₁₁ == a₁₂}
→ Square p₀₋ p₋₀ p₋₁ p₁₋ → Square q₀₋ p₋₁ q₋₂ q₁₋
→ Square (p₀₋ ∙' q₀₋) p₋₀ q₋₂ (p₁₋ ∙' q₁₋)
sq ⊡v' ids = sq
_∙v⊡_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ p₋₀' : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ p₋₀ == p₋₀'
→ Square p₀₋ p₋₀' p₋₁ p₁₋
→ Square p₀₋ p₋₀ p₋₁ p₁₋
idp ∙v⊡ sq = sq
_⊡v∙_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₋₀ : a₀₀ == a₁₀} {p₀₋ : a₀₀ == a₀₁}
{p₋₁ p₋₁' : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ p₋₁ == p₋₁'
→ Square p₀₋ p₋₀ p₋₁' p₁₋
sq ⊡v∙ idp = sq
_⊡h_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₂₀ a₂₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
{q₋₀ : a₁₀ == a₂₀} {q₋₁ : a₁₁ == a₂₁} {q₂₋ : a₂₀ == a₂₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ Square p₁₋ q₋₀ q₋₁ q₂₋
→ Square p₀₋ (p₋₀ ∙ q₋₀) (p₋₁ ∙ q₋₁) q₂₋
ids ⊡h sq = sq
_⊡h'_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₂₀ a₂₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
{q₋₀ : a₁₀ == a₂₀} {q₋₁ : a₁₁ == a₂₁} {q₂₋ : a₂₀ == a₂₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ Square p₁₋ q₋₀ q₋₁ q₂₋
→ Square p₀₋ (p₋₀ ∙' q₋₀) (p₋₁ ∙' q₋₁) q₂₋
sq ⊡h' ids = sq
_∙h⊡_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ p₀₋' : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ p₀₋ == p₀₋'
→ Square p₀₋' p₋₀ p₋₁ p₁₋
→ Square p₀₋ p₋₀ p₋₁ p₁₋
idp ∙h⊡ sq = sq
_⊡h∙_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ p₁₋' : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ p₁₋ == p₁₋'
→ Square p₀₋ p₋₀ p₋₁ p₁₋'
sq ⊡h∙ idp = sq
infixr 80 _⊡v_ _∙v⊡_
_⊡h_ _∙h⊡_
_⊡h'_
infixr 80 _⊡v∙_ _⊡h∙_
module _ {i} {A : Type i} where
!□h : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ Square p₁₋ (! p₋₀) (! p₋₁) p₀₋
!□h ids = ids
!□v : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ Square (! p₀₋) p₋₁ p₋₀ (! p₁₋)
!□v ids = ids
module _ {i} {A : Type i} where
⊡h-unit-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ hid-square ⊡h sq == sq
⊡h-unit-l ids = idp
⊡h-unit-r : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ sq ⊡h hid-square == ∙-unit-r _ ∙v⊡ sq ⊡v∙ ! (∙-unit-r _)
⊡h-unit-r ids = idp
⊡h'-unit-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ hid-square ⊡h' sq == ∙'-unit-l _ ∙v⊡ sq ⊡v∙ ! (∙'-unit-l _)
⊡h'-unit-l ids = idp
⊡h-unit-l-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq' : Square p₀₋ idp idp p₀₋) (sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ sq' ⊡h sq == sq
→ sq' == hid-square
⊡h-unit-l-unique sq' ids p = ! (⊡h-unit-r sq') ∙ p
module _ {i} {A : Type i} where
!□h-inv-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ (!□h sq) ⊡h sq == !-inv-l p₋₀ ∙v⊡ hid-square ⊡v∙ ! (!-inv-l p₋₁)
!□h-inv-l ids = idp
!□h-inv-r : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ sq ⊡h (!□h sq) == !-inv-r p₋₀ ∙v⊡ hid-square ⊡v∙ ! (!-inv-r p₋₁)
!□h-inv-r ids = idp
!□v-inv-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ (!□v sq) ⊡v sq == !-inv-l p₀₋ ∙h⊡ vid-square ⊡h∙ ! (!-inv-l p₁₋)
!□v-inv-l ids = idp
!□v-inv-r : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ sq ⊡v (!□v sq) == !-inv-r p₀₋ ∙h⊡ vid-square ⊡h∙ ! (!-inv-r p₁₋)
!□v-inv-r ids = idp
module _ {i} {A : Type i} where
square-left-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ p₀₋' : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋' p₋₀ p₋₁ p₁₋
→ p₀₋ == p₀₋'
square-left-unique {p₋₀ = idp} {p₋₁ = idp} sq₁ sq₂ =
horiz-degen-path (sq₁ ⊡h (!□h sq₂))
square-top-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ p₋₀' : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀' p₋₁ p₁₋
→ p₋₀ == p₋₀'
square-top-unique {p₀₋ = idp} {p₁₋ = idp} sq₁ sq₂ =
vert-degen-path (sq₁ ⊡v (!□v sq₂))
square-bot-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ p₋₁' : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀ p₋₁' p₁₋
→ p₋₁ == p₋₁'
square-bot-unique {p₀₋ = idp} {p₁₋ = idp} sq₁ sq₂ =
vert-degen-path ((!□v sq₁) ⊡v sq₂)
square-right-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ p₁₋' : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋'
→ p₁₋ == p₁₋'
square-right-unique {p₋₀ = idp} {p₋₁ = idp} sq₁ sq₂ =
horiz-degen-path ((!□h sq₁) ⊡h sq₂)
module _ {i} {A : Type i} where
connection : {a₀ a₁ : A} {q : a₀ == a₁}
→ Square idp idp q q
connection {q = idp} = ids
connection2 : {a₀ a₁ a₂ : A} {p : a₀ == a₁} {q : a₁ == a₂}
→ Square p p q q
connection2 {p = idp} {q = idp} = ids
lb-square : {a₀ a₁ : A} (p : a₀ == a₁)
→ Square p idp (! p) idp
lb-square idp = ids
bl-square : {a₀ a₁ : A} (p : a₀ == a₁)
→ Square (! p) idp p idp
bl-square idp = ids
rt-square : {a₀ a₁ : A} (p : a₀ == a₁)
→ Square idp (! p) idp p
rt-square idp = ids
tr-square : {a₀ a₁ : A} (p : a₀ == a₁)
→ Square idp p idp (! p)
tr-square idp = ids
lt-square : {a₀ a₁ : A} (p : a₀ == a₁)
→ Square p p idp idp
lt-square idp = ids