{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.NType2
open import lib.Equivalences2
open import lib.types.Unit
open import lib.types.Nat
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Paths
open import lib.types.TLevel
open import lib.types.Truncation
open import lib.types.Suspension
module lib.NConnected where
is-connected : ∀ {i} → ℕ₋₂ → Type i → Type i
is-connected n A = is-contr (Trunc n A)
has-conn-fibers : ∀ {i j} {A : Type i} {B : Type j} → ℕ₋₂ → (A → B) → Type (lmax i j)
has-conn-fibers {A = A} {B = B} n f =
Π B (λ b → is-connected n (hfiber f b))
-2-conn : ∀ {i} (A : Type i) → is-connected ⟨-2⟩ A
-2-conn A = Trunc-level
inhab-conn : ∀ {i} (A : Type i) (a : A) → is-connected ⟨-1⟩ A
inhab-conn A a = ([ a ] , prop-has-all-paths Trunc-level [ a ])
is-connected-is-prop : ∀ {i} {n : ℕ₋₂} {A : Type i}
→ is-prop (is-connected n A)
is-connected-is-prop = is-contr-is-prop
abstract
conn-elim-eqv : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂}
→ {h : A → B} → has-conn-fibers n h
→ (∀ {k} (P : B → n -Type k) → is-equiv (λ (s : Π B (fst ∘ P)) → s ∘ h))
conn-elim-eqv {A = A} {B = B} {n = n} {h = h} c P = is-eq f g f-g g-f
where f : Π B (fst ∘ P) → Π A (fst ∘ P ∘ h)
f k a = k (h a)
helper : Π A (fst ∘ P ∘ h)
→ (b : B) → Trunc n (Σ A (λ a → h a == b)) → (fst (P b))
helper t b r =
Trunc-rec (snd (P b))
(λ x → transport (λ y → fst (P y)) (snd x) (t (fst x)))
r
g : Π A (fst ∘ P ∘ h) → Π B (fst ∘ P)
g t b = helper t b (fst (c b))
f-g : ∀ t → f (g t) == t
f-g t = λ= $ λ a → transport
(λ r → Trunc-rec (snd (P (h a))) _ r == t a)
(! (snd (c (h a)) [ (a , idp) ]))
idp
g-f : ∀ k → g (f k) == k
g-f k = λ= $ λ (b : B) →
Trunc-elim (λ r → =-preserves-level _ {helper (k ∘ h) b r} (snd (P b)))
(λ x → lemma (fst x) b (snd x)) (fst (c b))
where
lemma : ∀ xl → ∀ b → (p : h xl == b) →
helper (k ∘ h) b [ (xl , p) ] == k b
lemma xl ._ idp = idp
conn-elim : ∀ {i j k} {A : Type i} {B : Type j} {n : ℕ₋₂}
→ {h : A → B} → has-conn-fibers n h
→ (P : B → n -Type k)
→ Π A (fst ∘ P ∘ h) → Π B (fst ∘ P)
conn-elim c P f = is-equiv.g (conn-elim-eqv c P) f
conn-elim-β : ∀ {i j k} {A : Type i} {B : Type j} {n : ℕ₋₂}
{h : A → B} (c : has-conn-fibers n h)
(P : B → n -Type k) (f : Π A (fst ∘ P ∘ h))
→ ∀ a → (conn-elim c P f (h a)) == f a
conn-elim-β c P f = app= (is-equiv.f-g (conn-elim-eqv c P) f)
conn-elim-general : ∀ {i j} {A : Type i} {B : Type j} {n k : ℕ₋₂}
→ {f : A → B} → has-conn-fibers n f
→ ∀ {l} (P : B → (k +2+ n) -Type l)
→ ∀ t → has-level k (Σ (Π B (fst ∘ P)) (λ s → (s ∘ f) == t))
conn-elim-general {k = ⟨-2⟩} c P t =
equiv-is-contr-map (conn-elim-eqv c P) t
conn-elim-general {B = B} {n = n} {k = S k'} {f = f} c P t =
λ {(g , p) (h , q) →
equiv-preserves-level (e g h p q) $
conn-elim-general {k = k'} c (Q g h) (app= (p ∙ ! q))}
where
Q : (g h : Π B (fst ∘ P)) → B → (k' +2+ n) -Type _
Q g h b = ((g b == h b) , snd (P b) _ _)
app=-ap : ∀ {i j k} {A : Type i} {B : Type j} {C : B → Type k}
(f : A → B) {g h : Π B C} (p : g == h)
→ app= (ap (λ k → k ∘ f) p) == (app= p ∘ f)
app=-ap f idp = idp
move-right-on-right-eqv : ∀ {i} {A : Type i} {x y z : A}
(p : x == y) (q : x == z) (r : y == z)
→ (p == q ∙ ! r) ≃ (p ∙ r == q)
move-right-on-right-eqv {x = x} p idp idp =
(_ , pre∙-is-equiv (∙-unit-r p))
lemma : ∀ g h p q → (H : ∀ x → g x == h x)
→ ((H ∘ f) == app= (p ∙ ! q))
≃ (ap (λ v → v ∘ f) (λ= H) ∙ q == p)
lemma g h p q H =
move-right-on-right-eqv (ap (λ v → v ∘ f) (λ= H)) p q
∘e transport (λ w → (w == app= (p ∙ ! q))
≃ (ap (λ v → v ∘ f) (λ= H) == p ∙ ! q))
(app=-ap f (λ= H) ∙ ap (λ k → k ∘ f) (λ= $ app=-β H))
((equiv-ap app=-equiv _ _)⁻¹)
e : ∀ g h p q →
(Σ (∀ x → g x == h x) (λ r → (r ∘ f) == app= (p ∙ ! q)))
≃ ((g , p) == (h , q))
e g h p q =
((=Σ-eqv _ _ ∘e equiv-Σ-snd (λ u → ↓-app=cst-eqv ∘e !-equiv))
∘e (equiv-Σ-fst _ (snd λ=-equiv))) ∘e equiv-Σ-snd (lemma g h p q)
conn-intro : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} {h : A → B}
→ (∀ (P : B → n -Type (lmax i j))
→ Σ (Π A (fst ∘ P ∘ h) → Π B (fst ∘ P))
(λ u → ∀ (t : Π A (fst ∘ P ∘ h)) → ∀ x → (u t ∘ h) x == t x))
→ has-conn-fibers n h
conn-intro {A = A} {B = B} {h = h} sec b =
let s = sec (λ b → (Trunc _ (hfiber h b) , Trunc-level))
in (fst s (λ a → [ a , idp ]) b ,
λ kt → Trunc-elim (λ kt → =-preserves-level _ {_} {kt} Trunc-level)
(λ k → transport
(λ v → fst s (λ a → [ a , idp ]) (fst v) == [ fst k , snd v ])
(snd (pathfrom-is-contr (h (fst k))) (b , snd k))
(snd s (λ a → [ a , idp ]) (fst k)))
kt)
abstract
pointed-conn-in : ∀ {i} {n : ℕ₋₂} (A : Type i) (a₀ : A)
→ has-conn-fibers {A = ⊤} n (cst a₀) → is-connected (S n) A
pointed-conn-in {n = n} A a₀ c =
([ a₀ ] ,
Trunc-elim (λ _ → =-preserves-level _ Trunc-level)
(λ a → Trunc-rec (Trunc-level {n = S n} _ _)
(λ x → ap [_] (snd x)) (fst $ c a)))
abstract
pointed-conn-out : ∀ {i} {n : ℕ₋₂} (A : Type i) (a₀ : A)
→ is-connected (S n) A → has-conn-fibers {A = ⊤} n (cst a₀)
pointed-conn-out {n = n} A a₀ c a =
(point ,
λ y → ! (cancel point)
∙ (ap out $ contr-has-all-paths (=-preserves-level ⟨-2⟩ c)
(into point) (into y))
∙ cancel y)
where
into-aux : Trunc n (Σ ⊤ (λ _ → a₀ == a)) → Trunc n (a₀ == a)
into-aux = Trunc-fmap snd
into : Trunc n (Σ ⊤ (λ _ → a₀ == a))
→ [_] {n = S n} a₀ == [ a ]
into = <– (Trunc=-equiv [ a₀ ] [ a ]) ∘ into-aux
out-aux : Trunc n (a₀ == a) → Trunc n (Σ ⊤ (λ _ → a₀ == a))
out-aux = Trunc-fmap (λ p → (tt , p))
out : [_] {n = S n} a₀ == [ a ] → Trunc n (Σ ⊤ (λ _ → a₀ == a))
out = out-aux ∘ –> (Trunc=-equiv [ a₀ ] [ a ])
cancel : (x : Trunc n (Σ ⊤ (λ _ → a₀ == a))) → out (into x) == x
cancel x =
out (into x)
=⟨ ap out-aux (<–-inv-r (Trunc=-equiv [ a₀ ] [ a ]) (into-aux x)) ⟩
out-aux (into-aux x)
=⟨ Trunc-fmap-∘ _ _ x ⟩
Trunc-fmap (λ q → (tt , (snd q))) x
=⟨ Trunc-elim {P = λ x → Trunc-fmap (λ q → (tt , snd q)) x == x}
(λ _ → =-preserves-level n Trunc-level) (λ _ → idp) x ⟩
x ∎
point : Trunc n (Σ ⊤ (λ _ → a₀ == a))
point = out $ contr-has-all-paths c [ a₀ ] [ a ]
prop-over-connected : ∀ {i j} {A : Type i} {a : A} (p : is-connected ⟨0⟩ A)
→ (P : A → hProp j)
→ fst (P a) → Π A (fst ∘ P)
prop-over-connected p P x = conn-elim (pointed-conn-out _ _ p) P (λ _ → x)
Trunc-preserves-conn : ∀ {i} {A : Type i} {n : ℕ₋₂} (m : ℕ₋₂)
→ is-connected n A → is-connected n (Trunc m A)
Trunc-preserves-conn {n = ⟨-2⟩} m c = Trunc-level
Trunc-preserves-conn {A = A} {n = S n} m c = lemma (fst c) (snd c)
where
lemma : (x₀ : Trunc (S n) A) → (∀ x → x₀ == x) → is-connected (S n) (Trunc m A)
lemma = Trunc-elim
(λ _ → Π-level (λ _ → Σ-level Trunc-level
(λ _ → Π-level (λ _ → =-preserves-level _ Trunc-level))))
(λ a → λ p → ([ [ a ] ] ,
Trunc-elim (λ _ → =-preserves-level _ Trunc-level)
(Trunc-elim
(λ _ → =-preserves-level _
(Trunc-preserves-level (S n) Trunc-level))
(λ x → <– (Trunc=-equiv [ [ a ] ] [ [ x ] ])
(Trunc-fmap (ap [_])
(–> (Trunc=-equiv [ a ] [ x ]) (p [ x ])))))))
abstract
Σ-conn : ∀ {i} {j} {A : Type i} {B : A → Type j} {n : ℕ₋₂}
→ is-connected n A → (∀ a → is-connected n (B a))
→ is-connected n (Σ A B)
Σ-conn {A = A} {B = B} {n = ⟨-2⟩} cA cB = -2-conn (Σ A B)
Σ-conn {A = A} {B = B} {n = S m} cA cB =
Trunc-elim
{P = λ ta → (∀ tx → ta == tx) → is-connected (S m) (Σ A B)}
(λ _ → Π-level (λ _ → prop-has-level-S is-contr-is-prop))
(λ a₀ pA →
Trunc-elim
{P = λ tb → (∀ ty → tb == ty) → is-connected (S m) (Σ A B)}
(λ _ → Π-level (λ _ → prop-has-level-S is-contr-is-prop))
(λ b₀ pB →
([ a₀ , b₀ ] ,
Trunc-elim
{P = λ tp → [ a₀ , b₀ ] == tp}
(λ _ → =-preserves-level _ Trunc-level)
(λ {(r , s) →
Trunc-rec (Trunc-level {n = S m} _ _)
(λ pa → Trunc-rec (Trunc-level {n = S m} _ _)
(λ pb → ap [_] (pair= pa (from-transp! B pa pb)))
(–> (Trunc=-equiv [ b₀ ] [ transport! B pa s ])
(pB [ transport! B pa s ])))
(–> (Trunc=-equiv [ a₀ ] [ r ]) (pA [ r ]))})))
(fst (cB a₀)) (snd (cB a₀)))
(fst cA) (snd cA)
×-conn : ∀ {i} {j} {A : Type i} {B : Type j} {n : ℕ₋₂}
→ is-connected n A → is-connected n B
→ is-connected n (A × B)
×-conn cA cB = Σ-conn cA (λ _ → cB)
abstract
Susp-conn : ∀ {i} {A : Type i} {n : ℕ₋₂}
→ is-connected n A → is-connected (S n) (Suspension A)
Susp-conn {A = A} {n = n} cA =
([ north A ] ,
Trunc-elim (λ _ → =-preserves-level _ Trunc-level)
(Suspension-elim A
idp
(Trunc-rec (Trunc-level {n = S n} _ _)
(λ a → ap [_] (merid A a))
(fst cA))
(λ x → Trunc-elim
{P = λ y → idp ==
Trunc-rec (Trunc-level {n = S n} _ _) (λ a → ap [_] (merid A a)) y
[ (λ z → [ north A ] == [ z ]) ↓ (merid A x) ]}
(λ _ → ↓-preserves-level _ (λ _ → Trunc-level {n = S n} _ _))
(λ x' → ↓-cst=app-in (∙'-unit-l _ ∙ mers-eq n cA x x'))
(fst cA))))
where
mers-eq : ∀ {i} {A : Type i} (n : ℕ₋₂)
→ is-connected n A → (x x' : A)
→ ap ([_] {n = S n}) (merid A x)
== Trunc-rec (Trunc-level {n = S n} _ _)
(λ a → ap [_] (merid A a)) [ x' ]
mers-eq ⟨-2⟩ cA x x' = contr-has-all-paths (Trunc-level {n = ⟨-1⟩} _ _) _ _
mers-eq {A = A} (S n) cA x x' =
conn-elim (pointed-conn-out A x cA)
(λ y → ((ap [_] (merid A x) == ap [_] (merid A y)) ,
Trunc-level {n = S (S n)} _ _ _ _))
(λ _ → idp) x'
abstract
path-conn : ∀ {i} {A : Type i} {x y : A} {n : ℕ₋₂}
→ is-connected (S n) A → is-connected n (x == y)
path-conn {x = x} {y = y} cA =
equiv-preserves-level (Trunc=-equiv [ x ] [ y ])
(contr-is-prop cA [ x ] [ y ])
connected-at-level-is-contr : ∀ {i} {A : Type i} {n : ℕ₋₂}
→ has-level n A → is-connected n A → is-contr A
connected-at-level-is-contr pA cA =
equiv-preserves-level (unTrunc-equiv _ pA) cA
connected-≤T : ∀ {i} {m n : ℕ₋₂} {A : Type i}
→ m ≤T n → is-connected n A → is-connected m A
connected-≤T {m = m} {n = n} {A = A} leq cA =
transport (λ B → is-contr B)
(ua (fuse-Trunc A m n) ∙ ap (λ k → Trunc k A) (minT-out-l leq))
(Trunc-preserves-level m cA)
equiv-preserves-conn : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} (e : A ≃ B)
→ (is-connected n A → is-connected n B)
equiv-preserves-conn {n = n} e = equiv-preserves-level (equiv-Trunc n e)
∘-conn : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
→ {n : ℕ₋₂} → (f : A → B) → (g : B → C)
→ has-conn-fibers n f
→ has-conn-fibers n g
→ has-conn-fibers n (g ∘ f)
∘-conn {n = n} f g cf cg =
conn-intro (λ P → conn-elim cg P ∘ conn-elim cf (P ∘ g) , lemma P)
where
lemma : ∀ P h x → conn-elim cg P (conn-elim cf (P ∘ g) h) (g (f x)) == h x
lemma P h x =
conn-elim cg P (conn-elim cf (P ∘ g) h) (g (f x))
=⟨ conn-elim-β cg P (conn-elim cf (P ∘ g) h) (f x) ⟩
conn-elim cf (P ∘ g) h (f x)
=⟨ conn-elim-β cf (P ∘ g) h x ⟩
h x
∎