{-# OPTIONS --without-K #-}
module function.isomorphism.utils where
open import level
open import sum
open import equality.core
open import equality.calculus
open import function.core
open import function.overloading
open import function.isomorphism.core
open import function.isomorphism.coherent
open import function.extensionality.proof
open import sets.nat.core
open import sets.unit
open import sets.empty
open import sets.fin.core
open import hott.level.core
Σ-split-iso : ∀ {i j}{X : Set i}{Y : X → Set j}
→ {a a' : X}{b : Y a}{b' : Y a'}
→ (Σ (a ≡ a') λ q → subst Y q b ≡ b')
≅ ((a , b) ≡ (a' , b'))
Σ-split-iso {Y = Y}{a}{a'}{b}{b'} = iso unapΣ apΣ H K
where
H : ∀ {a a'}{b : Y a}{b' : Y a'}
→ (p : Σ (a ≡ a') λ q → subst Y q b ≡ b')
→ apΣ (unapΣ {a = a}{a' = a'}{b = b}{b' = b'} p) ≡ p
H (refl , refl) = refl
K : (p : (a , b) ≡ (a' , b')) → unapΣ (apΣ p) ≡ p
K = J (λ u v p → unapΣ (apΣ p) ≡ p)
(λ {(a , b) → refl })
(a , b) (a' , b')
×-split-iso : ∀ {i j}{X : Set i}{Y : Set j}
→ {a a' : X}{b b' : Y}
→ ((a ≡ a') × (b ≡ b'))
≅ ((a , b) ≡ (a' , b'))
×-split-iso {X = X}{Y} = record
{ to = λ { (p , q) → ap₂ _,_ p q }
; from = λ { p → (ap proj₁ p , ap proj₂ p) }
; iso₁ = λ { (p , q) → H p q }
; iso₂ = K }
where
H : {a a' : X}{b b' : Y}(p : a ≡ a')(q : b ≡ b')
→ (ap proj₁ (ap₂ _,_ p q), ap proj₂ (ap₂ _,_ p q)) ≡ (p , q)
H refl refl = refl
K : {a a' : X}{b b' : Y}(p : (a , b) ≡ (a' , b'))
→ ap₂ _,_ (ap proj₁ p) (ap proj₂ p) ≡ p
K refl = refl
×-ap-iso : ∀ {i i' j j'}{X : Set i}{X' : Set i'}
{Y : Set j}{Y' : Set j'}
→ (isom : X ≅ X')
→ (isom' : Y ≅ Y')
→ (X × Y) ≅ (X' × Y')
×-ap-iso isom isom' = record
{ to = λ { (x , y) → (apply isom x , apply isom' y) }
; from = λ { (x' , y') → (invert isom x' , invert isom' y') }
; iso₁ = λ { (x , y) → pair≡ (_≅_.iso₁ isom x) (_≅_.iso₁ isom' y) }
; iso₂ = λ { (x' , y') → pair≡ (_≅_.iso₂ isom x') (_≅_.iso₂ isom' y') } }
→-ap-iso : ∀ {i i' j j'}{X : Set i}{X' : Set i'}
{Y : Set j}{Y' : Set j'}
→ X ≅ X' → Y ≅ Y'
→ (X → Y) ≅ (X' → Y')
→-ap-iso φ ψ = record
{ to = λ u x' → apply≅ ψ (u (invert≅ φ x'))
; from = λ u' x → invert≅ ψ (u' (apply≅ φ x))
; iso₁ = λ u → funext λ x → ap (invert≅ ψ ∘ apply≅ ψ ∘ u) (_≅_.iso₁ φ x)
· _≅_.iso₁ ψ (u x)
; iso₂ = λ u' → funext λ x' → ap (apply≅ ψ ∘ invert≅ ψ ∘ u') (_≅_.iso₂ φ x')
· _≅_.iso₂ ψ (u' x') }
Σ-ap-iso₂ : ∀ {i j j'}{X : Set i}
→ {Y : X → Set j}{Y' : X → Set j'}
→ ((x : X) → Y x ≅ Y' x)
→ Σ X Y ≅ Σ X Y'
Σ-ap-iso₂ {X = X}{Y}{Y'} isom = record
{ to = λ { (x , y) → (x , apply (isom x) y) }
; from = λ { (x , y') → (x , invert (isom x) y') }
; iso₁ = λ { (x , y) → unapΣ (refl , _≅_.iso₁ (isom x) y) }
; iso₂ = λ { (x , y') → unapΣ (refl , _≅_.iso₂ (isom x) y') } }
Σ-ap-iso₁ : ∀ {i i' j}{X : Set i}{X' : Set i'}{Y : X' → Set j}
→ (isom : X ≅ X')
→ Σ X (Y ∘ apply isom) ≅ Σ X' Y
Σ-ap-iso₁ {X = X}{X'}{Y} isom = record
{ to = λ { (x , y) → (f x , y) }
; from = λ { (x , y) → (g x , subst Y (sym (K x)) y) }
; iso₁ = λ { (x , y) → unapΣ (H x ,
subst-naturality Y f (H x) _
· (subst-hom Y (sym (K (f x))) (ap f (H x)) y
· ap (λ p → subst Y p y) (lem x) ) ) }
; iso₂ = λ { (x , y) → unapΣ (K x ,
subst-hom Y (sym (K x)) (K x) y
· ap (λ p → subst Y p y) (right-inverse (K x)) ) } }
where
isom-c = ≅⇒≅' isom
γ = proj₂ isom-c
open _≅_ (proj₁ isom-c)
renaming ( to to f ; from to g
; iso₁ to H; iso₂ to K )
lem : (x : X) → sym (K (f x)) · ap f (H x) ≡ refl
lem x = ap (λ z → sym (K (f x)) · z) (γ x)
· right-inverse (K (f x))
Σ-ap-iso : ∀ {i i' j j'}{X : Set i}{X' : Set i'}
{Y : X → Set j}{Y' : X' → Set j'}
→ (isom : X ≅ X')
→ ((x : X) → Y x ≅ Y' (apply isom x))
→ Σ X Y ≅ Σ X' Y'
Σ-ap-iso {X = X}{X'}{Y}{Y'} isom isom' = trans≅
(Σ-ap-iso₂ isom') (Σ-ap-iso₁ isom)
Σ-ap-iso' : ∀ {i i' j j'}{X : Set i}{X' : Set i'}
{Y : X → Set j}{Y' : X' → Set j'}
→ (isom : X ≅ X')
→ ((x : X') → Y (invert isom x) ≅ Y' x)
→ Σ X Y ≅ Σ X' Y'
Σ-ap-iso' {X = X}{X'}{Y}{Y'} isom isom'
= sym≅ (Σ-ap-iso (sym≅ isom) (λ x → sym≅ (isom' x)))
Π-ap-iso : ∀ {i i' j j'}{X : Set i}{X' : Set i'}
{Y : X → Set j}{Y' : X' → Set j'}
→ (isom : X ≅ X')
→ ((x' : X') → Y (invert isom x') ≅ Y' x')
→ ((x : X) → Y x)
≅ ((x' : X') → Y' x')
Π-ap-iso {X = X}{X'}{Y}{Y'} isom isom' =
trans≅ (Π-iso (≅⇒≅' isom)) (Π-iso' isom')
where
Π-iso : (isom : X ≅' X')
→ ((x : X) → Y x)
≅ ((x' : X') → Y (invert (proj₁ isom) x'))
Π-iso (iso f g H K , γ) = record
{ to = λ h x' → h (g x')
; from = λ h' x → subst Y (H x) (h' (f x))
; iso₁ = λ h → funext λ x → ap' h (H x)
; iso₂ = λ h' → funext λ x' →
ap (λ p → subst Y p _) (sym (γ' x'))
· sym (subst-naturality Y g (K x') _)
· ap' h' (K x') }
where γ' = co-coherence (iso f g H K) γ
Π-iso' : ∀ {i j j'}{X : Set i}
{Y : X → Set j}{Y' : X → Set j'}
→ ((x : X) → Y x ≅ Y' x)
→ ((x : X) → Y x)
≅ ((x : X) → Y' x)
Π-iso' isom = record
{ to = λ h x → apply (isom x) (h x)
; from = λ h' x → invert (isom x) (h' x)
; iso₁ = λ h → funext λ x → _≅_.iso₁ (isom x) _
; iso₂ = λ h' → funext λ x → _≅_.iso₂ (isom x) _ }
ΠΣ-swap-iso : ∀ {i j k}{X : Set i}{Y : X → Set j}
→ {Z : (x : X) → Y x → Set k}
→ ((x : X) → Σ (Y x) λ y → Z x y)
≅ (Σ ((x : X) → Y x) λ f → ((x : X) → Z x (f x)))
ΠΣ-swap-iso = record
{ to = λ f → (proj₁ ∘' f , proj₂ ∘' f)
; from = λ { (f , g) x → (f x , g x) }
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
curry-iso : ∀ {i j k}{X : Set i}{Y : X → Set j}
(Z : (x : X) → Y x → Set k)
→ ((xy : Σ X Y) → Z (proj₁ xy) (proj₂ xy))
≅ ((x : X) → (y : Y x) → Z x y)
curry-iso _ = record
{ to = λ f x y → f (x , y)
; from = λ { f (x , y) → f x y }
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
Π-comm-iso : ∀ {i j k}{X : Set i}{Y : Set j}{Z : X → Y → Set k}
→ ((x : X)(y : Y) → Z x y)
≅ ((y : Y)(x : X) → Z x y)
Π-comm-iso = record
{ to = λ f y x → f x y
; from = λ f x y → f y x
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
Σ-comm-iso : ∀ {i j k}{X : Set i}{Y : Set j}{Z : X → Y → Set k}
→ (Σ X λ x → Σ Y λ y → Z x y)
≅ (Σ Y λ y → Σ X λ x → Z x y)
Σ-comm-iso = record
{ to = λ { (x , y , z) → (y , x , z) }
; from = λ { (y , x , z) → (x , y , z) }
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
impl-iso : ∀ {i j}{X : Set i}{Y : X → Set j}
→ ((x : X) → Y x) ≅ ({x : X} → Y x)
impl-iso = record
{ to = λ f → f _
; from = λ f _ → f
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
Σ-assoc-iso : ∀ {i j k}
{X : Set i}{Y : X → Set j}
{Z : (x : X) → Y x → Set k}
→ Σ (Σ X Y) (λ {(x , y) → Z x y})
≅ Σ X λ x → Σ (Y x) (Z x)
Σ-assoc-iso = record
{ to = λ {((x , y) , z) → (x , y , z) }
; from = λ {(x , y , z) → ((x , y) , z) }
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
⊎-Σ-iso : ∀ {i}(X : Fin 2 → Set i)
→ (X zero ⊎ X (suc zero))
≅ Σ (Fin 2) X
⊎-Σ-iso X = record
{ to = λ { (inj₁ x) → zero , x
; (inj₂ x) → suc zero , x }
; from = λ { (zero , x) → inj₁ x
; (suc zero , x) → inj₂ x
; (suc (suc ()) , _) }
; iso₁ = λ { (inj₁ x) → refl
; (inj₂ x) → refl }
; iso₂ = λ { (zero , x) → refl
; (suc zero , x) → refl
; (suc (suc ()) , _) } }
⊎-ap-iso : ∀ {i j i' j'}
→ {X : Set i}{X' : Set i'}
→ {Y : Set j}{Y' : Set j'}
→ X ≅ X'
→ Y ≅ Y'
→ (X ⊎ Y) ≅ (X' ⊎ Y')
⊎-ap-iso (iso f g α β) (iso f' g' α' β') = record
{ to = λ { (inj₁ x) → inj₁ (f x) ; (inj₂ y) → inj₂ (f' y) }
; from = λ { (inj₁ x) → inj₁ (g x) ; (inj₂ y) → inj₂ (g' y) }
; iso₁ = λ { (inj₁ x) → ap inj₁ (α x) ; (inj₂ y) → ap inj₂ (α' y) }
; iso₂ = λ { (inj₁ x) → ap inj₁ (β x) ; (inj₂ y) → ap inj₂ (β' y) } }
⊎-assoc-iso : ∀ {i j k}
→ {X : Set i}{Y : Set j}{Z : Set k}
→ ((X ⊎ Y) ⊎ Z)
≅ (X ⊎ (Y ⊎ Z))
⊎-assoc-iso = record
{ to = λ { (inj₁ (inj₁ x)) → inj₁ x
; (inj₁ (inj₂ y)) → inj₂ (inj₁ y)
; (inj₂ z) → inj₂ (inj₂ z) }
; from = λ { (inj₁ x) → inj₁ (inj₁ x)
; (inj₂ (inj₁ y)) → inj₁ (inj₂ y)
; (inj₂ (inj₂ z)) → inj₂ z }
; iso₁ = λ { (inj₁ (inj₁ x)) → refl
; (inj₁ (inj₂ y)) → refl
; (inj₂ z) → refl }
; iso₂ = λ { (inj₁ x) → refl
; (inj₂ (inj₁ y)) → refl
; (inj₂ (inj₂ z)) → refl } }
⊎×-distr-iso : ∀ {i j k}
→ {X : Set i}{Y : Set j}{Z : Set k}
→ ((X ⊎ Y) × Z)
≅ ((X × Z) ⊎ (Y × Z))
⊎×-distr-iso = record
{ to = λ { (inj₁ x , z) → inj₁ (x , z)
; (inj₂ y , z) → inj₂ (y , z) }
; from = λ { (inj₁ (x , z)) → inj₁ x , z
; (inj₂ (y , z)) → inj₂ y , z }
; iso₁ = λ { (inj₁ x , z) → refl
; (inj₂ y , z) → refl }
; iso₂ = λ { (inj₁ (x , z)) → refl
; (inj₂ (y , z)) → refl } }
⊎-universal : ∀ {i j k}{X : Set i}{Y : Set j}
→ {Z : X ⊎ Y → Set k}
→ ((u : X ⊎ Y) → Z u)
≅ (((x : X) → Z (inj₁ x)) × ((y : Y) → Z (inj₂ y)))
⊎-universal = record
{ to = λ f → (f ∘' inj₁ , f ∘' inj₂)
; from = λ { (g₁ , g₂) (inj₁ x) → g₁ x
; (g₁ , g₂) (inj₂ y) → g₂ y }
; iso₁ = λ f → funext λ
{ (inj₁ x) → refl
; (inj₂ x) → refl }
; iso₂ = λ { (g₁ , g₂) → refl } }
×-left-unit : ∀ {i j}{X : Set i} → (⊤ {j} × X) ≅ X
×-left-unit = record
{ to = λ {(tt , x) → x }
; from = λ x → tt , x
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
×-right-unit : ∀ {i j}{X : Set i} → (X × ⊤ {j}) ≅ X
×-right-unit = record
{ to = λ {(x , tt) → x }
; from = λ x → x , tt
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
contr-⊤-iso : ∀ {i}{X : Set i}
→ contr X → X ≅ ⊤ {lzero}
contr-⊤-iso hX = record
{ to = λ x → tt
; from = λ { tt → proj₁ hX }
; iso₁ = λ x → proj₂ hX x
; iso₂ = λ { tt → refl } }
empty-⊥-iso : ∀ {i}{X : Set i} → ¬ X → X ≅ ⊥ {lzero}
empty-⊥-iso u = record
{ to = u
; from = ⊥-elim
; iso₁ = λ x → ⊥-elim (u x)
; iso₂ = λ () }
×-comm : ∀ {i j}{X : Set i}{Y : Set j}
→ (X × Y) ≅ (Y × X)
×-comm = record
{ to = λ {(x , y) → (y , x)}
; from = λ {(y , x) → (x , y)}
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
Π-left-unit : ∀ {i j}{X : Set i}
→ (⊤ {j} → X) ≅ X
Π-left-unit = record
{ to = λ f → f tt
; from = λ x _ → x
; iso₁ = λ _ → refl
; iso₂ = λ f → refl }
sym≡-iso : ∀ {i}{X : Set i}(x y : X)
→ (x ≡ y)
≅ (y ≡ x)
sym≡-iso _ _ = iso sym sym double-inverse double-inverse
trans≡-iso : ∀ {i}{X : Set i}{x y z : X}
→ (x ≡ y)
→ (y ≡ z) ≅ (x ≡ z)
trans≡-iso p = record
{ to = λ q → p · q
; from = λ q → sym p · q
; iso₁ = λ q → sym (associativity (sym p) p q)
· ap (λ z → z · q) (right-inverse p)
; iso₂ = λ q → sym (associativity p (sym p) q)
· ap (λ z → z · q) (left-inverse p) }
trans≡-iso' : ∀ {i}{X : Set i}{x y z : X}
→ (y ≡ z)
→ (x ≡ y) ≅ (x ≡ z)
trans≡-iso' q = record
{ to = λ p → p · q
; from = λ p → p · sym q
; iso₁ = λ p → associativity p q (sym q)
· ap (_·_ p) (left-inverse q)
· left-unit p
; iso₂ = λ p → associativity p (sym q) q
· (ap (_·_ p) (right-inverse q)
· left-unit p) }
move-≡-iso : ∀ {i}{X : Set i}{x y z : X}
→ (p : x ≡ y)(q : y ≡ z)(r : x ≡ z)
→ (p · q ≡ r)
≅ (sym p · r ≡ q)
move-≡-iso refl = sym≡-iso
J-iso : ∀ {i j}{X : Set i}{x : X}
→ {P : (y : X) → x ≡ y → Set j}
→ P x refl
≅ ((y : X)(p : x ≡ y) → P y p)
J-iso {X = X}{x}{P} = record
{ to = J' P
; from = λ u → u x refl
; iso₁ = λ _ → refl
; iso₂ = λ u → funext λ y → funext λ p → β u y p }
where
β : (u : (y : X)(p : x ≡ y) → P y p)
→ (y : X)(p : x ≡ y)
→ J' P (u x refl) y p ≡ u y p
β u .x refl = refl