{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Paths
module lib.types.Torus where
module _ where
private
data #Torus-aux : Type₀ where
#baseT : #Torus-aux
data #Torus : Type₀ where
#torus : #Torus-aux → (Unit → Unit) → #Torus
Torus : Type₀
Torus = #Torus
baseT : Torus
baseT = #torus #baseT _
postulate
loopT1 : baseT == baseT
loopT2 : baseT == baseT
surfT : loopT1 ∙ loopT2 == loopT2 ∙ loopT1
module TorusElim {i} {P : Torus → Type i} (baseT* : P baseT)
(loopT1* : baseT* == baseT* [ P ↓ loopT1 ])
(loopT2* : baseT* == baseT* [ P ↓ loopT2 ])
(surfT* : loopT1* ∙ᵈ loopT2* == loopT2* ∙ᵈ loopT1*
[ (λ p → baseT* == baseT* [ P ↓ p ]) ↓ surfT ]) where
f : Π Torus P
f = f-aux phantom where
f-aux : Phantom surfT* → Π Torus P
f-aux phantom (#torus #baseT _) = baseT*
postulate
loopT1-β : apd f loopT1 == loopT1*
loopT2-β : apd f loopT2 == loopT2*
private
lhs : apd f (loopT1 ∙ loopT2) == loopT1* ∙ᵈ loopT2*
lhs =
apd f (loopT1 ∙ loopT2) =⟨ apd-∙ f loopT1 loopT2 ⟩
apd f loopT1 ∙ᵈ apd f loopT2 =⟨ loopT1-β |in-ctx (λ u → u ∙ᵈ apd f loopT2) ⟩
loopT1* ∙ᵈ apd f loopT2 =⟨ loopT2-β |in-ctx (λ u → loopT1* ∙ᵈ u) ⟩
loopT1* ∙ᵈ loopT2* ∎
rhs : apd f (loopT2 ∙ loopT1) == loopT2* ∙ᵈ loopT1*
rhs =
apd f (loopT2 ∙ loopT1) =⟨ apd-∙ f loopT2 loopT1 ⟩
apd f loopT2 ∙ᵈ apd f loopT1 =⟨ loopT2-β |in-ctx (λ u → u ∙ᵈ apd f loopT1) ⟩
loopT2* ∙ᵈ apd f loopT1 =⟨ loopT1-β |in-ctx (λ u → loopT2* ∙ᵈ u) ⟩
loopT2* ∙ᵈ loopT1* ∎
postulate
surfT-β : apd (apd f) surfT == lhs ◃ (surfT* ▹! rhs)
module TorusRec {i} {A : Type i} (baseT* : A) (loopT1* loopT2* : baseT* == baseT*)
(surfT* : loopT1* ∙ loopT2* == loopT2* ∙ loopT1*) where
private
module M = TorusElim {P = λ _ → A} baseT* (↓-cst-in loopT1*) (↓-cst-in loopT2*)
(↓-cst-in-∙ loopT1 loopT2 loopT1* loopT2*
!◃ (↓-cst-in2 surfT* ▹ (↓-cst-in-∙ loopT2 loopT1 loopT2* loopT1*)))
f : Torus → A
f = M.f
loopT1-β : ap f loopT1 == loopT1*
loopT1-β = apd=cst-in {f = f} M.loopT1-β
loopT2-β : ap f loopT2 == loopT2*
loopT2-β = apd=cst-in {f = f} M.loopT2-β
private
lhs : ap f (loopT1 ∙ loopT2) == loopT1* ∙ loopT2*
lhs =
ap f (loopT1 ∙ loopT2) =⟨ ap-∙ f loopT1 loopT2 ⟩
ap f loopT1 ∙ ap f loopT2 =⟨ loopT1-β |in-ctx (λ u → u ∙ ap f loopT2) ⟩
loopT1* ∙ ap f loopT2 =⟨ loopT2-β |in-ctx (λ u → loopT1* ∙ u) ⟩
loopT1* ∙ loopT2* ∎
rhs : ap f (loopT2 ∙ loopT1) == loopT2* ∙ loopT1*
rhs =
ap f (loopT2 ∙ loopT1) =⟨ ap-∙ f loopT2 loopT1 ⟩
ap f loopT2 ∙ ap f loopT1 =⟨ loopT2-β |in-ctx (λ u → u ∙ ap f loopT1) ⟩
loopT2* ∙ ap f loopT1 =⟨ loopT1-β |in-ctx (λ u → loopT2* ∙ u) ⟩
loopT2* ∙ loopT1* ∎
postulate
surfT-β : ap (ap f) surfT == (lhs ∙ surfT*) ∙ (! rhs)