{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Empty.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Empty.Base
isProp⊥ : isProp ⊥
isProp⊥ ()
isContr⊥→A : ∀ {ℓ} {A : Type ℓ} → isContr (⊥ → A)
fst isContr⊥→A ()
snd isContr⊥→A f i ()
uninhabEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
→ (A → ⊥) → (B → ⊥) → A ≃ B
uninhabEquiv ¬a ¬b = isoToEquiv isom
where
open Iso
isom : Iso _ _
isom .fun a = rec (¬a a)
isom .inv b = rec (¬b b)
isom .rightInv b = rec (¬b b)
isom .leftInv a = rec (¬a a)