{-# OPTIONS --cubical #-}
module BrouwerTree.AlternativeDefinition where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.Relation.Nullary
open import Cubical.HITs.PropositionalTruncation.Properties
renaming (rec to ∥-∥rec)
open import BrouwerTree.Base
open import BrouwerTree.Properties
open import BrouwerTree.Code
open import BrouwerTree.Code.Results
mutual
data Brw' : Type where
zero' : Brw'
succ' : Brw' -> Brw'
limit' : (f : ℕ -> Brw') {f↑ : increasing' f} -> Brw'
antisym' : ∀ {x y} -> x ≤' y -> y ≤' x -> x ≡ y
data _≤'_ : Brw' -> Brw' -> Type where
≤-zero' : ∀ {x} → zero' ≤' x
≤-trans' : ∀ {x y z} -> x ≤' y -> y ≤' z -> x ≤' z
succ-mono' : ∀ {x y} -> x ≤' y -> succ' x ≤' succ' y
cocone' : ∀ f {f↑} k {x} -> x ≤' f k -> x ≤' limit' f {f↑}
limiting' : ∀ f {f↑ x} -> ((k : ℕ) -> f k ≤' x) -> limit' f {f↑} ≤' x
≤-trunc' : ∀ {x y} -> isProp (x ≤' y)
_<'_ : Brw' -> Brw' -> Type
x <' y = succ' x ≤' y
increasing' : (ℕ → Brw') -> Type
increasing' f = ∀ k → f k <' f (suc k)
Brw'-ind : ∀ {a} →
(P : Brw' → Type a) →
(P-prop : (x : Brw') → isProp (P x)) →
(z : P zero') →
(s : {x : Brw'} → P x → P (succ' x)) →
(l : ∀ {f f↑} → ((k : ℕ) → P (f k)) → P (limit' f {f↑})) →
(x : Brw') → P x
Brw'-ind P isProp⟨P⟩ z s l zero' = z
Brw'-ind P isProp⟨P⟩ z s l (succ' x) = s (Brw'-ind P isProp⟨P⟩ z s l x)
Brw'-ind P isProp⟨P⟩ z s l (limit' f {f↑}) = l λ k → Brw'-ind P isProp⟨P⟩ z s l (f k)
Brw'-ind P isProp⟨P⟩ z s l (antisym' {x} {y} p q i) =
isProp→PathP (λ j → isProp⟨P⟩ (antisym' p q j))
(Brw'-ind P isProp⟨P⟩ z s l x)
(Brw'-ind P isProp⟨P⟩ z s l y) i
≤'-refl : ∀ {x} → x ≤' x
≤'-refl {zero'} = ≤-zero'
≤'-refl {succ' x} = succ-mono' (≤'-refl {x})
≤'-refl {limit' f {f↑}} = limiting' f {f↑} λ k → cocone' f {f↑} k {f k} (≤'-refl {f k})
≤'-refl {antisym' {x} {y} p q i} =
isProp→PathP {B = λ i → antisym' p q i ≤' antisym' p q i}
(λ _ → ≤-trunc')
(≤'-refl {x})
(≤'-refl {y}) i
≤'-refl-≡ : ∀ {x y} → x ≡ y → x ≤' y
≤'-refl-≡ {x} {y} x≡y = subst (λ z → z ≤' y) (sym x≡y) ≤'-refl
Brw'-hSeparated : HSeparated Brw'
Brw'-hSeparated x y ∣x≡y∣ = antisym' x≤y y≤x
where
x≤y×y≤x =
∥-∥rec
(isProp× ≤-trunc' ≤-trunc')
(λ x≡y → subst (λ z → x ≤' z) x≡y ≤'-refl , subst (λ z → z ≤' x) x≡y ≤'-refl)
∣x≡y∣
x≤y = fst x≤y×y≤x
y≤x = snd x≤y×y≤x
isSetBrw' : isSet Brw'
isSetBrw' = HSeparated→isSet Brw'-hSeparated
open import Simulations Brw' _≤'_
renaming (_simulated-by_ to _≲'_ ; _bisimilar-to_ to _≈'_)
bisim→≤' : ∀ {f f↑ g g↑} → f ≲' g → limit' f {f↑} ≤' limit' g {g↑}
bisim→≤' {f} {f↑} {g} {g↑} f≲g =
limiting' f {x = limit' g} (λ k → ∥-∥rec {A = Σ[ n ∈ ℕ ] f k ≤' g n}
{P = f k ≤' limit' g}
≤-trunc'
(λ {(n , fk≤'gn) → cocone' g n {f k} fk≤'gn})
(f≲g k))
bisim' : ∀ {f f↑ g g↑} → f ≈' g → limit' f {f↑} ≡ limit' g {g↑}
bisim' {f} {f↑} {g} {g↑} (f≲'g , g≲'f) = antisym' (bisim→≤' f≲'g) (bisim→≤' g≲'f)
mutual
Brw→Brw' : Brw → Brw'
Brw→Brw' zero = zero'
Brw→Brw' (succ x) = succ' (Brw→Brw' x)
Brw→Brw' (limit f {f↑}) = limit' (Brw→Brw' ∘ f)
{λ k → Brw→Brw'-mono {succ (f k)} {f (suc k)} (f↑ k)}
Brw→Brw' (bisim f {f↑} g {g↑} (f≲g , g≲f) i) =
bisim' {f↑ = λ k → Brw→Brw'-mono {succ (f k)} {f (suc k)} (f↑ k)}
{g↑ = λ k → Brw→Brw'-mono {succ (g k)} {g (suc k)} (g↑ k)}
(Brw→Brw'-pres-bisim f≲g , Brw→Brw'-pres-bisim g≲f) i
Brw→Brw' (trunc x y p q i j) = isSet→SquareP {A = λ _ _ → Brw'} (λ _ _ → isSetBrw')
(λ j → Brw→Brw' (p j))
(λ j → Brw→Brw' (q j))
refl
refl i j
Brw→Brw'-mono : ∀ {x y} → x ≤ y → (Brw→Brw' x ≤' Brw→Brw' y)
Brw→Brw'-mono {.zero} {y} ≤-zero = ≤-zero'
Brw→Brw'-mono (≤-trans {x} {y} {z} x≤y y≤z) = ≤-trans' (Brw→Brw'-mono x≤y) (Brw→Brw'-mono y≤z)
Brw→Brw'-mono {.(succ x)} {.(succ y)} (≤-succ-mono {x} {y} x≤y) = succ-mono' (Brw→Brw'-mono x≤y)
Brw→Brw'-mono {x} {.(limit f)} (≤-cocone f {k = k} x≤y) = cocone' (Brw→Brw' ∘ f) k
(Brw→Brw'-mono x≤y)
Brw→Brw'-mono {.(limit f)} {y} (≤-limiting f f≤y) = limiting' (Brw→Brw' ∘ f) (Brw→Brw'-mono ∘ f≤y)
Brw→Brw'-mono {x} {y} (≤-trunc p q i) = ≤-trunc' (Brw→Brw'-mono p) (Brw→Brw'-mono q) i
{-# TERMINATING #-}
Brw→Brw'-pres-bisim : ∀ {f g} → f ≲ g → (Brw→Brw' ∘ f) ≲' (Brw→Brw' ∘ g)
Brw→Brw'-pres-bisim {f} {g} f≲g =
λ k → ∥-∥rec {A = Σ[ n ∈ ℕ ] f k ≤ g n}
{P = ∃[ n ∈ ℕ ] Brw→Brw' (f k) ≤' Brw→Brw' (g n)}
propTruncIsProp
(λ {(n , fk≤gn) → ∣(n , Brw→Brw'-mono fk≤gn)∣})
(f≲g k)
mutual
Brw'→Brw : Brw' → Brw
Brw'→Brw zero' = zero
Brw'→Brw (succ' x) = succ (Brw'→Brw x)
Brw'→Brw (limit' f {f↑}) = limit (λ n → Brw'→Brw (f n)) {λ k → Brw'→Brw-mono (f↑ k)}
Brw'→Brw (antisym' p q i) = antisym (Brw'→Brw-mono p) (Brw'→Brw-mono q) i
{-# TERMINATING #-}
Brw'→Brw-mono : ∀ {x y} → x ≤' y → (Brw'→Brw x ≤ Brw'→Brw y)
Brw'→Brw-mono ≤-zero' = ≤-zero
Brw'→Brw-mono (≤-trans' x≤z z≤y) = ≤-trans (Brw'→Brw-mono x≤z) (Brw'→Brw-mono z≤y)
Brw'→Brw-mono (succ-mono' x≤y) = ≤-succ-mono (Brw'→Brw-mono x≤y)
Brw'→Brw-mono (cocone' f k x≤fk) = ≤-cocone (λ n → Brw'→Brw (f n)) {k = k} (Brw'→Brw-mono x≤fk)
Brw'→Brw-mono (limiting' f f≤y) = ≤-limiting (λ n → Brw'→Brw (f n)) (λ k → Brw'→Brw-mono (f≤y k))
Brw'→Brw-mono (≤-trunc' p q i) = ≤-trunc (Brw'→Brw-mono p) (Brw'→Brw-mono q) i
right-identity : (x : Brw') → Brw→Brw' (Brw'→Brw x) ≡ x
right-identity = Brw'-ind (λ x → Brw→Brw' (Brw'→Brw x) ≡ x)
(λ c → isSetBrw' _ _)
refl
(λ {x} ih → cong succ' ih)
(λ {f} {f↑} ih → bisim' ((λ k → ∣ k , ≤'-refl-≡ (ih k) ∣) ,
(λ k → ∣ k , ≤'-refl-≡ (sym (ih k)) ∣)))
left-identity : (x : Brw) → Brw'→Brw (Brw→Brw' x) ≡ x
left-identity = Brw-ind (λ x → Brw'→Brw (Brw→Brw' x) ≡ x)
(λ c → isSetBrw _ _)
refl
(λ {x} ih → cong succ ih)
(λ {f} {f↑} ih → bisim (λ n → Brw'→Brw (Brw→Brw' (f n))) f
((λ k → ∣ k , ≤-refl-≡ (ih k) ∣) ,
(λ k → ∣ k , ≤-refl-≡ (sym (ih k)) ∣)))
Brw≃Brw' : Brw ≃ Brw'
Brw≃Brw' = isoToEquiv (iso Brw→Brw' Brw'→Brw right-identity left-identity)