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Constructive ordinals Ordinals are a powerful tool for establishing consistency of logical
theories, proving termination of processes and justifying induction and recursion. Constructively,
there are many different approaches to ordinals, such as ordinal notation systems [6], or Brouwer
trees [4], or as wellfounded trees with finite or countable branchings [5, 1]. The homotopy type
theory book follows the classical idea of considering ordinals as order types of well ordered sets,
and defines ordinals as types equipped with an order relation that is transitive, extensional
(elements with the same predecessors are equal) and wellfounded (the order admits the principle
of transfinite induction) [9, §10.3]. Notably, the univalence axiom is used to exhibit the type of
(small) ordinals as a (large) ordinal; specifically, it is used to show that the relation on ordinals
given by bounded simulations is extensional. This gives rise to a fascinating theory of ordinals,
often skirting the edges of what is constructively achievable. With this in mind, is it possible
to develop a constructive theory of arithmetic for such ordinals, with operations of addition,
multiplication and exponentiation which extend the usual arithmetic for the natural numbers?

Ordinal exponentiation via case distinction Addition and multiplication can be realised
by disjoint union and Cartesian product of the underlying types of the ordinals, respectively.
Their basic properties were investigated by Escardó [3].

The case of exponentiation is constructively more challenging. From the classical theory of
ordinals, we know what the specification should be: for zero and successors, exponentiation
should be repeated multiplication, and it should be continuous as soon as the base is non-zero:

α0 = 1
αβ+1 = αβ × α

αsupi:I f(i) = sup
i:I

αf(i) (for α ̸= 0, I inhabited)

0β = 0 (for β ̸= 0)

(†)

Using classical logic, this is already a definition of exponentiation, but not so in a constructive
setting, where the ability to make definitions by case distinctions on arbitrary ordinals is not
available. In fact, we can show:

Theorem 1. There is an operation αβ satisfying the specification (†) for all ordinals α and β
if and only if excluded middle holds.

In fact, excluded middle follows as soon as there is an exponentiation operator which is
monotone in the exponent, and satisfies the first two equations of the specification (†). There is
thus no hope of defining ordinal exponentiation constructively for arbitrary ordinals.



Constructive Ordinal Exponentiation in HoTT de Jong, Kraus, Nordvall Forsberg and Xu

Ordinal exponentiation as functions with finite support However, we could still hope to
define exponentiation for restricted classes of ordinals. For α > 0 (which is equivalent to α having
a least element ⊥), Sierpiński [8, §XIV.15] gives an explicit construction of the exponential αβ

as the collection of functions β → α with finite support, i.e., functions f : β → α such that
f(x) > ⊥ for only finitely many x. While this definition works well classically, the order relation
it induces does not seem to be well-behaved constructively. The usual classical argument that
the exponential is an ordinal requires decidability of the order on α, and decidable equality on
α seems to be required to verify the expected properties (such as the specification (†)) of this
ordinal. In general, neither of these assumptions are constructively justified.

Constructive exponentiation for ordinals with a detachable least element Let α be
an ordinal of the form α = 1 + γ for some ordinal γ. That is, let α be an ordinal with a least
element which is detachable — we can decide if a given element is the least one or not. For
such α, we are able to define the exponential αβ constructively, by considering a “combinatorial”
variant of Sierpiński’s construction.

Since β is an ordinal, we can think of a finitely supported function from β to γ as a finite
list of output-input1 pairs [(c0, b0), (c1, b1), . . . , (cn, bn)] : List (γ × β) which is strictly decreasing
in the second argument (to enforce that each input has a unique output), with all inputs not
occurring in the list being sent to the least element. Write

D2List(γ, β) :=
(
Σ ℓ : List (γ × β)

)
is-decreasing (map π2 ℓ)

for the type of such lists of pairs decreasing in the second component. The idea of the
combinatorial presentation using lists is similar to—but more general than—Setzer’s sketch [7,
App. A] of the construction of exponentials with base ω.

Theorem 2. The type D2List(γ, β) is an ordinal, when ordered lexicographically. Moreover, it
satisfies the specification (†) for α = 1 + γ.

Proof sketch. Because the list is decreasing, the lexicographic order is wellfounded.
For verifying the specification (†), note that the only list with elements from γ × 0 is the

empty list, so D2List(γ, 0) = 1. For checking that D2List(γ, β + 1) = D2List(γ, β) × (1 + γ), note
that a list ℓ in D2List(γ, β + 1) contains at most one head of the form (c0, inr ⋆), followed by
a list ℓ1 in D2List(γ, β). If the head is of the form (c0, inr ⋆), the list ℓ corresponds to the pair
(ℓ1, inr c0), and otherwise it corresponds to the pair (ℓ, inl ⋆). For the supremum case, it is crucial
that the lists are decreasing in the second component; see the Agda code for details.

Alternative constructions of exponentials In work in progress, we are investigating
alternative definitions of exponentials. In particular, building on a suggestion by David Wärn,
we consider the following definition by transfinite recursion:

αβ := sup
1+β

{
inl ⋆ 7→ 1
inr b 7→ αβ↓b × α,

where β ↓ b is the initial segment of β consisting of elements strictly smaller than b. This is
motivated by the specification (†) and the observation that every ordinal γ is the supremum of
the successors of its initial segments, i.e., γ = supc:γ((γ ↓ c) + 1). This operation indeed satisfies
the specification (†) for α ≥ 1. Relating this construction to the one above is ongoing work.

1We prefer to use output-input pairs rather than input-output pairs so that their order corresponds to the
usual order on the product γ × β, which is reverse lexicographic.
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Formalisation We have formalised our results in Agda, building on Escardó’s TypeTopology
development [2]. We have found Agda extremely valuable in developing our proofs as the
intensional nature of our construction makes for rather combinatorial arguments. The source
code can be found at https://github.com/fredrikNordvallForsberg/TypeTopology/blob/
exponentiation/source/Ordinals/Exponentiation/.
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