Internal ∞-Categories with Families

Nicolai Kraus

MSP 101 Seminar (Strathclyde), 18 Feb 2021

Talk based on arXiv:2009.01883.

introduction: Joshua Chen (stated PD OH'20)

 \Longrightarrow Part 1: Why do we want ∞ -CwF's?

Part 2: How to define them?

Part 3: What works or is still missing?

Goal: Define what a model of type theory is – in type theory!

(in particular: intended initial model ∼ "syntax")

Peter Dybjer, 2005: Internal Type Theory

```
Danielsson 2006
                                          record CwF : Set where
                                             field
Chapman 2009
                                               Con : Set
Shulman 2014
                                               Sub : Con → Con → Set
Escardó-XII 2014
                                               Tv : Con → Set
K. 2015
                                               Tm : (Γ : Con) → Tv Γ → Set
Altenkirch-Kaposi 2016
Bucholtz 2017
                                                   : Con
Abel-Öhman-Vezzosi 2017
                                               ▶ : (Γ : Con) → Ty Γ → Con
Ahrens-Lumsdaine-Voevodsky 2017/18
Brunerie-de Boer 2018-20
                                               -- (and so on)
Lumsdaine-Mörtberg 2018-20
Kaposi-Kovács-K., 2020
```

. . .

CwF definition as a GAT Con $: \quad (\Gamma : \mathsf{Con}) \to \mathsf{Ty}\,\Gamma \to \mathsf{Type}$: Type Sub : $Con \rightarrow Con \rightarrow Type$ $[\quad]^{\mathsf{t}}: \quad \mathsf{Tm}\,\Delta\,A \to (\sigma:\mathsf{Sub}\,\Gamma\Delta) \to \mathsf{Tm}\,\Gamma\,(A[\sigma]^{\mathsf{T}})$ $\diamond \qquad : \quad \mathsf{Sub}\,\Theta\,\Delta \to \mathsf{Sub}\,\Gamma\,\Theta \to \mathsf{Sub}\,\Gamma\,\Delta$ [id]^t : $t[\mathsf{id}]^{\mathsf{t}} = t$ over [id]^T assoc : $(\sigma \diamond \delta) \diamond \nu = \sigma \diamond (\delta \diamond \nu)$ [◊]^t : $t[\sigma \diamond \delta]^{\mathsf{t}} = t[\sigma]^{\mathsf{t}}[\delta]^{\mathsf{t}}t$ over [◊]^T : Sub IT & category $(\Gamma:\mathsf{Con})\to\mathsf{Ty}\,\Gamma\to\mathsf{Con}$ idl_{σ} : $\mathsf{id} \diamond \sigma = \sigma$: Sub $(\Gamma \triangleright A) \Gamma$ idr_{σ} : $\sigma \diamond id = \sigma$: $\mathsf{Tm}(\Gamma \triangleright A)(A[\mathsf{p}]^\mathsf{T})$ term obi : Con $_\ ,\ _\ :\ (\sigma:\mathsf{Sub}\,\Gamma\,\Delta)\to\mathsf{Tm}\,\Gamma\,(A[\sigma]^\mathsf{T})\to\mathsf{Sub}\,\Gamma\,(\Delta\,\triangleright\,A)$: Sub Γ • $\triangleright \beta_1$: $p \diamond (\sigma, t) = \sigma$: $\forall (\sigma : \mathsf{Sub}\,\Gamma \bullet). \ \sigma = \epsilon$ $\triangleright \beta_2$: $q[\sigma, t]^t = tt$ over $[\diamond]^T$ and $\diamond \beta_1$ $: \mathsf{Con} \to \mathsf{Type}$ (p,q) = id $\mathsf{I}^\mathsf{T}: \mathsf{Tv}\,\Delta \to \mathsf{Sub}\,\Gamma\,\Delta \to \mathsf{Tv}\,\Gamma$ $, \diamond : (\sigma, t) \diamond \nu = (\sigma \diamond \nu, t[\nu]^{\mathsf{t}})t \qquad \text{over } [\diamond]^{\mathsf{T}}$ representability of the functor (e/s) of Sel (1.0) in The To : $A[\mathsf{id}]^\mathsf{T} = A$ $[\diamond]^{\mathsf{T}}$: $A[\sigma \diamond \delta]^{\mathsf{T}} = A[\sigma]^{\mathsf{T}}[\delta]^{\mathsf{T}}$ (Good definition in a type theory with K/UIP)

gustient ind-ind type

First example of a CwF: "Syntax QIIT", a.k.a. the initial model as a QIIT (Altenkirch-Kaposi 2016)

Initiality theorem (Brunerie, de Boer, Lumsdaine, Mörtberg 2019–today) implies: Syntax QIIT $\,\simeq\,\,$ non-well-typed syntax with wellformedness predicates.

Second example of a CwF: "Standard Model", a.k.a. the universe with the obvious structure

- ullet Con is the universe ${\cal U}$
- Sub $\Gamma \Delta$ is the function type $(\Gamma \to \Delta)$
- Ty Γ is given as $(\Gamma \to \mathcal{U})$
- Tm ΓA is given as $\Pi(x:\Gamma).(Ax)$ (x:T) \longrightarrow A \times
- all operations are canonical
- all operations are canonica
- all equations hold judgmentally (in Agda)

The trouble with(out) UIP

Recall: UIP (uniqueness of identity proofs) a.k.a. Axiom K says:

$$(x y: A) \rightarrow (p q: x = y) \rightarrow (p = q)$$

The above definition of a CwF works assuming UIP.

What if UIP is not assumed?

Happens e.g. in HoTT and in Agda {-# OPTIONS --without-K #-}

Two canonical approaches:

- (1) Ignore it: Do everything as before.
- or
- (2) Make up for it: Assume that Con, Sub, Ty, Tm are families of h-sets.

No UIP: problems of the canonical approaches

(1) Ignore the absence of UIP: Do everything as before.

But then:
$$idl_{\sigma}: id \diamond \sigma = \sigma$$

 $idr_{\sigma}: \sigma \diamond id = \sigma$

- Initial model (w/ base types) does **not** satisfy $idl_{id} = idr_{id}$. \Rightarrow Initial model is **not** based on h-sets & does **not** have decidable equality.
- ⇒ "Syntax QIIT" (example 1) is not initial.
- (2) Bake UIP into the definition of CWF: Require Con etc. to be h-sets.

Typical "HoTT solution".

But: The universe is not an h-set.

 \Rightarrow The "standard model" (example 2) fails.

Why we really want both examples (syntax QIIT and standard model)

Shulman 2014:

Is the $n^{
m th}$ universe a model of HoTT with (n-1) universes?

I.e.: Can we define the syntax and *interpret* it in \mathcal{U}_n ?

Work by: Escardó-Xu, K., Bucholtz, Lumsdaine, Kaposi-Kovaćs, Altenkirch, . . .

However: Even the simplest¹ version of this is still open!

1 (where the core problem occurs)

The two examples would give a solution:

Back to the definition from slide 4:

Goal: Make this coherent! E.g. we really need $idl_{id} = idr_{id}$.

Brutal method: Require h-sets everywhere (too restrictive).

Proposed method: Use higher categories $\Longrightarrow (\infty, 1)$ -CwF's.

Part 1: Why do we want ∞ -CwF's?

Part 3: What works or is still missing?

⇒ Part 2: How to define them?

As discussed above: A 1-CwF consists of

- ullet a category ${\mathcal C}$ of contexts and substitutions
- a presheaf of types
- another functor for terms
- a context extension operation.

We need to ∞ -categorify everything. This talk: ∞ -categories (the first point).

What is an ∞-category? Model used: Rezk's Segal spaces.

Strategy:

- (1) Start with a semisimplicial type ("basic structure")
- (2) Add Segal condition ($\Rightarrow \infty$ -semicategory)
- (3) Add identities ($\Rightarrow \infty$ -category)

(1) Recall: semisimplicial type up to level 2 is tuple (A_0, A_1, A_2) where

 A_0 : Type

 $A_1:A_0\to A_0\to \mathsf{Type}$

 $A_2: \{x\,y\,z: A_0\} \to (A_1\,x\,y) \to (A_1\,y\,z) \to (A_1\,x\,z) \to \mathsf{Type}$

Az is type of "triangle fillers"

"Solution": Use 2LTT.

Caveat: Known open problem to construct this in HoTT for general n

(2) Adding the Segal condition

Ob: Type

Ob : Type
$$\longrightarrow$$
 Hom : Ob \rightarrow Ob \rightarrow Type $\stackrel{\frown}{\longrightarrow}$

$$_\circ_: \{x\,y\,z: \mathsf{Ob}\} o (\mathsf{Hom}\,y\,z)$$

 \rightarrow (Hom xy) \rightarrow (Hom xz)

$$\rightarrow (\operatorname{\mathsf{Hom}} y\,z) \qquad \qquad A$$

$$A_1: A_0 \to A_0 \to \mathsf{Type}$$

 A_0 : Type

$$A_2: \{x \ y \ z: A_0\} \rightarrow (A_1 \ y \ z)$$

 $\rightarrow (A_1 \ x \ y) \rightarrow (A_1 \ x$

$$\rightarrow (A_1 x y) \rightarrow (A_1 x z) \rightarrow \mathsf{Type}$$

$$\rightarrow (A_1 x y) \rightarrow (A_1 x y)$$

$$A_1 x y) \rightarrow (A_1 x y)$$

$$h_2: \{x \neq z : A_0\} \rightarrow (A_1 \times z) \rightarrow \text{type}$$

$$h_2: \{x \neq z : A_0\} \rightarrow (g: A_1 \times z) \rightarrow (f: A_1 \times y)$$

Semisimplicial type (beginning)

$$\Rightarrow is Contr(\Sigma(x:X).Px).$$

$$: X \to \mathsf{Type}).is \mathsf{Contr}(\Sigma(x:X).Px).$$

Lemma: For X: Type, we have $X \simeq \Sigma(P:X \to \mathsf{Type})$ is $\mathsf{Contr}(\Sigma(x:X).Px)$.

(Empty page) s.t. Azgfh

(3) Add identities/degeneracies

In previous work: Completeness (Lurie/Harpaz/Capriotti) corresponding to univalent identities (cf. Capriotti-Kraus 2018).

Here: We don't want built-in univalence. Instead:

Def: A morphism $f: A_1 x y$ is a good identity if it is an idempotent equivalence.

Def: f is idempotent if $A_2 f f f$.

Def: f is an equivalence if pre- and post-composition with f is.

gives: An xy -An two maps: pre- and post composition

Definition: A semicategory (higher semicategory, semi-Segal type) has a *good identity structure* if every object (point) is equipped with an *idempotent equivalence*.

Theorem: "Having a good identity structure":

- is a propositional property; and
- generates all degeneracies; and
- is interderivable with a "standard" identity structure (id with idl and idr).

Definition: An ∞ -category is a semisimplicial type which satisfies the Segal condition and has a good identity structure.

(Extending ∞ -categories to ∞ -CwF's is not done in this talk.)

Part 1: Why do we want ∞ -CwF's?

⇒ Part 3: What works or is still missing?

Part 2: How to define them?

```
Done (see paper):

Definition of ∞-CwF's

Variations, such as univalent or finite-dimensional ∞-CwF's

Syntax QIIT as an ∞-CwF

Standard model as an ∞-CwF

Initial ∞-CwF (given appropriate techniques)
```

Initiality of the Syntax QIIT

To do:

• Interderivability (in some suitable sense) of the two open problems "Can HoTT eat itself?" and "Can we define semisimplicial types?"

(Thanks for your attention! The end.)