Connecting Constructive Notions of Ordinals
in Homotopy Type Theory

Nicolai Kraus Fredrik Nordvall Forsberg Chuangjie Xu

MFCS 2021, August 23-27, Tallinn/online hybrid

What are ordinals?
One answer: Numbers for counting/ordering:
0, 1, 2, 3, ..., w, w+1l, w+2,
w-2, w- 241, ..., W ..., WP3+w-7T+13,

w W

w
W, ..., =W Y ey E1Ty e, W,

What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, |..., w, w+1l, w+2,

w-2, w- 241, ..., W ..., WP3+w-7T+13,

w W

w
W, ..., =W Y ey E1Ty e, W,

What are ordinals?

One answer: Numbers for counting/ordering:

01, 2 3 .., |w wtl, w+2|...

w-2, w- 241, ..., W ..., WP3+w-7T+13,

w W

w
W, ..., =W Y ey E1Ty e, W,

What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, ..., w, w+1l, w+2,

w-2, w- 241, ..., W ..., WP3+w-7T+13,

w W

w
W, ..., =W Y ey E1Ty e, W,

What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, ..., w, w+1l, w+2,
w-2, w241, ..., W o, W34 w-T+13, ...,
WY, &tozw“’wm, R S L

Another answer: |Sets with an order <|which is

> transitive: (a<b)—=(b<ec)— (a<c)
» wellfounded: every sequence ag > ai > as > as > ... terminates
» and trichotomous: (a <b)V (a=10b)V (b<a)

» ...or extensional (instead of trichotomous):
Vaa<bra<c)—b=c

What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, ..., w, w+1l, w+2,
w-2, w- 241, ..., W ..., WP3+w-7T+13,
WY, &tozw“’wm, R S L

Another answer: Sets with an order < which is

> [transitive: (a<b)—(b<c)— (a<c)

» wellfounded: every sequence ag > a; > as > az >
» and trichotomous: (a <b)V (a=10b)V (b<a)

» ...or extensional (instead of trichotomous):
Vaa<bra<c)—b=c

... terminates

What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, ..., w, w+1l, w+2,
w-2, w241, ..., W o, W34 w-T+13, ...,
WY, &tozw“’wm, R S L

Another answer: Sets with an order < which is

> transitive: (a<b)—=(b<ec)— (a<c)

» | wellfounded: every sequence ag > ai > as > as > ... terminates

» and trichotomous: (a <b)V (a=10b)V (b<a)

» ...or extensional (instead of trichotomous):
Vaa<bra<c)—b=c

What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, ..., w, w+1l, w+2,
w-2, w- 241, ..., W ..., WP3+w-7T+13,
WY, &tozw“’wm, R S L

Another answer: Sets with an order < which is
> transitive: (a<b)—=(b<c)—=(a<c)

» wellfounded: every sequence ag > a; > as > az >

» and trichotomous: (a <b)V (a=10b)V (b<a)

» ...or extensional (instead of trichotomous):
Vaa<bra<c)—b=c

... terminates

What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, ..., w, w+1l, w+2,
w-2, w241, ..., W o, W34 w-T+13, ...,
WY, &tozw“’wm, R S L

Another answer: Sets with an order < which is
> transitive: (a<b)—=(b<ec)— (a<c)
» wellfounded: every sequence ag > ai > as > as > ... terminates

» and trichotomous: (a <b)V (a=10b)V (b<a)

» ...or extensional (instead of trichotomous):
(Va.a<b<ra<c)—=b=c

What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, ..., w, w+1l, w+2,
w-2, w-2 What are ordinals good for?
W € CS standard applications:
e proving termination of processes
Another answer: (fun example: Hydra game)
> transitive: e justifying recursive definitions /

(why does the Ackermann

> wellfoundec function terminate?)

» and trichotc ° . ..

» ...or extensional (instead ot trichotomous):
Vaa<bra<c)—b=c

3 > ... terminates

What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, ..., w, w+1l, w+2, ...
w2, w241, ..., W o, W34 w TH+13, .
. L)M(;
W, ..., =W Y ey E1Ty e, W1, ...
: o cas, cao,gé/
Another answer: Sets with an order < which is /

> transitive: (a<b)—=(b<c)—=(a<c) V
» wellfounded: every sequence ag > ai > as > as > ... terminates

» and trichotomous: (a <b)V (a=10b)V (b<a)

» ...or extensional (instead of trichotomous):
Vaa<bra<c)—b=c

Ordinals in dependent type theory

=> Problem /feature of a constructive setting: different definitions differ!
Three standard notions of “ordinals” in computer science:
» Cantor normal forms
» Brouwer trees
» Wellfounded & extensional & transitive orders

What's the connection? Why can we call them “ordinals”?

Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(i) “correct” formulation of Brouwer trees (quotient inductive-inductively)

(iii) connections between the three notions and their arithmetic operations

Ordinals in dependent type theory

Problem /feature of a constructive setting: different definitions differ!

Three standard notions of “ordinals” in computer science:

>| Cantor normal forms|

» Brouwer trees

» Wellfounded & extensional & transitive orders
What's the connection? Why can we call them “ordinals”?
Developments in this paper:

(i) axiomatic framework for ordinals and ordinal arithmetic

(i) “correct” formulation of Brouwer trees (quotient inductive-inductively)

(iii) connections between the three notions and their arithmetic operations

Ordinals in dependent type theory
Problem /feature of a constructive setting: different definitions differ!
Three standard notions of “ordinals” in computer science:

» Cantor normal forms

» | Brouwer trees |

» Wellfounded & extensional & transitive orders
What's the connection? Why can we call them “ordinals”?
Developments in this paper:

(i) axiomatic framework for ordinals and ordinal arithmetic

(i) “correct” formulation of Brouwer trees (quotient inductive-inductively)

(iii) connections between the three notions and their arithmetic operations

Ordinals in dependent type theory
Problem /feature of a constructive setting: different definitions differ!
Three standard notions of “ordinals” in computer science:

» Cantor normal forms

» Brouwer trees

> |We||founded & extensional & transitive orders|

What's the connection? Why can we call them “ordinals”?

Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(i) “correct” formulation of Brouwer trees (quotient inductive-inductively)

(iii) connections between the three notions and their arithmetic operations

Ordinals in dependent type theory

Problem /feature of a constructive setting: different definitions differ!
Three standard notions of “ordinals” in computer science:

» Cantor normal forms

» Brouwer trees

» Wellfounded & extensional & transitive orders

éWhat's the connection? Why can we call them “ordinals”?

Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(i) “correct” formulation of Brouwer trees (quotient inductive-inductively)

(iii) connections between the three notions and their arithmetic operations

Ordinals in dependent type theory
Problem /feature of a constructive setting: different definitions differ!
Three standard notions of “ordinals” in computer science:

» Cantor normal forms
» Brouwer trees
» Wellfounded & extensional & transitive orders

What's the connection? Why can we call them “ordinals”?
Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic

(i) “correct” formulation of Brouwer trees (quotient inductive-inductively)

(iii) connections between the three notions and their arithmetic operations

What do we expect of “ordinals™?
When does (O, <) deserve to be called “ordinals?

(a) Wellfoundedness: Every decreasing sequence terminates / can do
transfinite induction.

What do we expect of “ordinals™?
When does (O, <) deserve to be called “ordinals?

(a) Wellfoundedness: Every decreasing sequence terminates / can do
transfinite induction.

(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what
does that mean?)

What do we expect of “ordinals™?
When does (O, <) deserve to be called “ordinals?

(a) Wellfoundedness: Every decreasing sequence terminates / can do
transfinite induction.

(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what
does that mean?)

" (c) Trichotomy: (a <b)V (a=0b)V (b<a)

What do we expect of “ordinals™?
When does (O, <) deserve to be called “ordinals?

(a) Wellfoundedness: Every decreasing sequence terminates / can do
transfinite induction.

(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what
does that mean?)

" (c) Trichotomy: (a <b)V (a=0b)V (b<a))’)07‘ YZ/4 fgffaf/% /

What do we expect of “ordinals™?
When does (O, <) deserve to be called “ordinals?

(a) Wellfoundedness: Every decreasing sequence terminates / can do
transfinite induction.

(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what
does that mean?)

(c) Trichotomy: (a <b)V (a=10)V (b<a)

(d) Extensionality: (Va.a <b<ra<c) —=b=c

What do we expect of “ordinals™?
When does (O, <) deserve to be called “ordinals?

(a) Wellfoundedness: Every decreasing sequence terminates / can do
transfinite induction.

(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what
does that mean?)

(c) Trichotomy: (a <b)V (a=10)V (b<a)

(d) Extensionality: (Va.a <b<ra<c) —=b=c

(e) Suprema/limits: Given a sequence, we can calculate its limit.

What do we expect of “ordinals™?
When does (O, <) deserve to be called “ordinals?

(a) Wellfoundedness: Every decreasing sequence terminates / can do

transfinite induction.

(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what

does that mean?)
(c) Trichotomy: (a <b)V (a=10)V (b<a)

(d) Extensionality: (Va.a <b<ra<c) —=b=c

(e) Suprema/limits: Given a sequence, we can calculate its limit.

ol
Nece St ;a/

What do we expect of “ordinals™?
When does (O, <) deserve to be called “ordinals?

(a) Wellfoundedness: Every decreasing sequence terminates / can do
transfinite induction.

(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what
does that mean?)

c) Trichotomy: (a <b)V (a =b)V (b < a)
d) Extensionality: (Va.a <b<>a<c)—b=c

e) Suprema/limits: Given a sequence, we can calculate its limit.

f) Classifiability: If 2 : O, then x is a zero, a successor, or a limit.

(
(
(
(

What do we expect of “ordinals™?
When does (O, <) deserve to be called “ordinals?

(a) Wellfoundedness: Every decreasing sequence terminates / can do
transfinite induction.

(b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what
does that mean?)

c) Trichotomy: (a <b)V (a =b)V (b < a)
d) Extensionality: (Va.a <b<>a<c)—b=c

e) Suprema/limits: Given a sequence, we can calculate its limit.

f) Classifiability: If 2 : O, then x is a zero, a successor, or a limit.

not

(
(
(
(neav;zw/,/

™™

Cantor normal forms

Motivation: o = w® + w® + -+« 4w’ with f; > 5y > -+ > 8,

Cantor normal forms

Motivation: o = w”' + w2 + -« + WP with By > By > --- > B,

Let 7 be the type of unlabeled binary trees:

0 T

w’+—;7'—>7'—>7' «= @/m-/o

Cantor normal forms

Motivation: o = w”' + w2 + -« + WP with By > By > --- > B,

Let 7 be the type of unlabeled binary trees:

0 T

w’+—;7'—>7'—>7' «= m@/m-/o

A tree is a Cantor normal form if By > [> -+ > B, (lexicographical order).

Cantor normal forms

Motivation: o = w”' + w2 + -« + WP with By > By > --- > B,

Let 7 be the type of unlabeled binary trees:

0 T
W= T=T—=T @/m-/o

A tree is a Cantor normal form if By > [> -+ > B, (lexicographical order).

Cannot calculate limits of sequences, but everything else works
— including continuity of arithmetic operations!

Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type O of Brouwer trees?

zero: O succ: O — O sup: (N—=0)—> O

Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type O of Brouwer trees?

zero : O

succ: O = O

sup: (N—-O0)— 0O

Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type O of Brouwer trees?

zero: O succ: O — O sup: (N—-O0)— 0O

Problem: sup(0,1,2,3,...) # sup(1,2,3,...)

How to fix this without losing wellfoundedness, validity of arithmetic operations,
and so on?

Brouwer trees quotient inductive-inductively

data Brw where

Zero
Succ

limit :

bisim

t

runc :

: Brw (cubical Agda)
: Brw -» Brw

(f : N> Brw) - {fr : increasing f} - Brw

: vV f {fr} g {gr} -

:g-»
limit f {f+} = limit g {gt}
isSet Brw

data = where

IANIA A IA A A

-zero
-trans
-succ-m
-cocone
-limiti
-trunc

: V {x} - zero = X
cV{xyz}-x=sy-y=sz->X
ono : Y {Xy} » X =y - succ x s succy
V¥V {x} f {ft k} - (x = f k) » (x = limit f {f1})
ng :Vf {fr x} »> ((k:N)->fk=x)-Tlimit f {ft} = x
: V {x y} - isProp (x =vy)

IA
N

~ IA

Brouwer trees quotient inductive-inductively

data Brw where

=> zero

Succ

limit :

bisim

t

runc :

: Brw (cubical Agda)
: Brw -» Brw

(f : N> Brw) - {fr : increasing f} - Brw

: vV f {fr} g {gr} -

:g-»
limit f {f+} = limit g {gt}
isSet Brw

data = where

IANIA A IA A A

-zero
-trans
-succ-m
-cocone
-limiti
-trunc

: V {x} - zero = X
cV{xyz}-x=sy-y=sz->X
ono : Y {Xy} » X =y - succ x s succy
V¥V {x} f {ft k} - (x = f k) » (x = limit f {f1})
ng :Vf {fr x} »> ((k:N)->fk=x)-Tlimit f {ft} = x
: V {x y} - isProp (x =vy)

IA
N

~ IA

Brouwer trees quotient inductive-inductively

data Brw where

Zero
=5UCC

limit :

bisim

t

runc :

: Brw (cubical Agda)
: Brw -» Brw

(f : N> Brw) - {fr : increasing f} - Brw

: vV f {fr} g {gr} -

:g-»
limit f {f+} = limit g {gt}
isSet Brw

data = where

IANIA A IA A A

-zero
-trans
-succ-m
-cocone
-limiti
-trunc

: V {x} - zero = X
cV{xyz}-x=sy-y=sz->X
ono : Y {Xy} » X =y - succ x s succy
V¥V {x} f {ft k} - (x = f k) » (x = limit f {f1})
ng :Vf {fr x} »> ((k:N)->fk=x)-Tlimit f {ft} = x
: V {x y} - isProp (x =vy)

IA
N

~ IA

Brouwer trees quotient inductive-inductively

data Brw where

Zero
Succ

=linit :

bisim

t

runc :

: Brw (cubical Agda)
: Brw -» Brw

(f : N> Brw) - {fr : increasing f} - Brw

: vV f {fr} g {gr} -

:g-»
limit f {f+} = limit g {gt}
isSet Brw

data = where

IANIA A IA A A

-zero
-trans
-succ-m
-cocone
-limiti
-trunc

: V {x} - zero = X
cV{xyz}-x=sy-y=sz->X
ono : Y {Xy} » X =y - succ x s succy
V¥V {x} f {ft k} - (x = f k) » (x = limit f {f1})
ng :Vf {fr x} »> ((k:N)->fk=x)-Tlimit f {ft} = x
: V {x y} - isProp (x =vy)

IA
N

~ IA

Brouwer trees quotient inductive-inductively

data Brw where

Zero
Succ

limit :

=>bisim

t

runc :

: Brw (cubical Agda)
: Brw -» Brw

(f : N> Brw) - {fr : increasing f} - Brw

: vV f {fr} g {gr} -

:g-»
limit f {f+} = limit g {gt}
isSet Brw

data = where

IANIA A IA A A

-zero
-trans
-succ-m
-cocone
-limiti
-trunc

: V {x} - zero = X
cV{xyz}-x=sy-y=sz->X
ono : Y {Xy} » X =y - succ x s succy
V¥V {x} f {ft k} - (x = f k) » (x = limit f {f1})
ng :Vf {fr x} »> ((k:N)->fk=x)-Tlimit f {ft} = x
: V {x y} - isProp (x =vy)

IA
N

~ IA

Brouwer trees quotient inductive-inductively

data Brw where

Zero
Succ

limit :

bisim

>t

runc :

: Brw (cubical Agda)
: Brw -» Brw

(f : N> Brw) - {fr : increasing f} - Brw

: vV f {fr} g {gr} -

:g-»
limit f {f+} = limit g {gt}
isSet Brw

data = where

IANIA A IA A A

-zero
-trans
-succ-m
-cocone
-limiti
-trunc

: V {x} - zero = X
cV{xyz}-x=sy-y=sz->X
ono : Y {Xy} » X =y - succ x s succy
V¥V {x} f {ft k} - (x = f k) » (x = limit f {f1})
ng :Vf {fr x} »> ((k:N)->fk=x)-Tlimit f {ft} = x
: V {x y} - isProp (x =vy)

IA
N

~ IA

Brouwer trees quotient inductive-inductively

data Brw where

z
S
1
b

t

=> dat
=> dat

INIA DA A IA)

ero
ucc
imit :
isim

runc :

: Brw (cubical Agda)
: Brw -» Brw

(f : N> Brw) - {fr : increasing f} - Brw

: vV f {fr} g {gr} -

:g-»
limit f {f+} = limit g {gt}
isSet Brw

a = where

-zero
-trans
-succ-m
-cocone
-limiti
-trunc

: V {x} - zero = X
cV{xyz}-x=sy-y=sz->X
ono : Y {Xy} » X =y - succ x s succy
V¥V {x} f {ft k} - (x = f k) » (x = limit f {f1})
ng :Vf {fr x} »> ((k:N)->fk=x)-Tlimit f {ft} = x
: V {x y} - isProp (x =vy)

IA
N

~ IA

Brouwer trees quotient inductive-inductively

data Brw where
zero : Brw (cubical Agda)
succ : Brw - Brw
limit : (f : N > Brw) - {ft : increasing f} - Brw
bisim : vV f {ft+} g {gr} -
f = g -
limit f {f+} = limit g {gr}
trunc : isSet Brw

data = where

<-zero : V {x} - zero = X

=-trans V{xXyz}-xXx=sy-y=s2z-Xx=s12

=-succ-mono : Y {X y} » X =y - succ x = succ y

<-cocone :V {x} f {ft k} - (x = f k) - (x = limit f {f1})
=-limiting : V f {f+ x} - ((k : N) - f k = x) - limit f {ft} = X
=-trunc : V {x y} - isProp (x =vy)

Not trichotomous (a < b undecidable), everything else works — notably
wellfoundedness and arithmetic.

Brouwer trees quotient inductive-inductively

data Brw where

zero : Brw (cubical Agda)
succ : Brw - Brw
limit : (f : N > Brw) - {ft : increasing f} - Brw
bisim : vV f {ft+} g {gr} -

f = g -

limit f {f+} = limit g {gr}
trunc : isSet Brw

data = where

a- ZIM"L({’) Lmﬂl{a ,,[))

<-zero : V {x} - zero = X

=-trans :V{xXyz}-xXx=sy-y=sz>5XZ<=Z

=-succ-mono : Y {X y} » X =y - succ x = succ y

<-cocone VvV {x} f {ft Kk} - (x = f k) - (x = limit f {f1})
=-limiting : V f {f+ x} - ((k : N) - f k = x) - limit f {ft} = X
=-trunc : V {x y} - isProp (x =vy)

Not trichotomous (a < b undecidable), everything else works — notably
wellfoundedness and arithmetic.

Extensional wellfounded orders

Deftinition of type Ord:
Pairs (X : Type, <: X — X — Prop) such that < is transitive, extensional,
wellfounded.

(X, =x) < (Y, <y) is given by:
A monotone function f: X — Y
such that: if y <y fx, then there is o <x x such that fzy=y.

Extensional wellfounded orders

Definition of type Ord:
Pairs (X : Type, <: X — X — Prop) such that < is transitive, extensional,
wellfounded.

(X, <x) < (Y, <y) is given by:

A monotone function f: X — Y

such that: if y <y fx, then there is o <x x such that fzy=y.

Extensional wellfounded orders

Definition of type Ord:

Pairs (X : Type, <: X — X — Prop) such that < is transitive, extensional,
wellfounded.

(X, <x) < (Y, <y) is given by:

A monotone function f: X — Y

such that: if y <y fx, then there is o <x x such that fzy=y.

(Ord, <) is extensional and wellfounded, we has addition and multiplication, we
can calculate limits.

Extensional wellfounded orders

Definition of type Ord:

Pairs (X : Type, <: X — X — Prop) such that < is transitive, extensional,
wellfounded.

(X, <x) < (Y, <y) is given by:

A monotone function f: X — Y

such that: if y <y fx, then there is o <x x such that fzy=y.

(Ord, <) is extensional and wellfounded, we has addition and multiplication, we
can calculate limits.

Unsurprisingly, nothing is decidable. E.g. deciding whether x : Ord is a successor
implies LEM (in the HoTT sense).

Connections between the notions

- partially .
decidable ; s decidable - undecidablg
t t
Cnf |© ° > | Brw € ° Ord
44& +b) = wB@ 4 CtoBtH) A DY :Brw).Y < A
® injective e injective
e preserves and reflects <, < e preserves <, <

e commutes with +, *, w”

e bounded (by ¢)

e over-approximates +, x:

BtoO(z + y) > BtoO(x) + BtoO(y)
e commutes with limits

(but not successors)
e BtoO is a simulation = WLPO

e LEM = BtoO is a simulation
e bounded (by Brw)

Connections between the notions

partially

decidable decidable undecidable
CtoB BtoO
(W 4 b) > W@ 1 CtoB(b) A XY :Brw).Y < A
® injective e injective
e preserves and reflects <, < e preserves <, <

e commutes with +, *, w”

e bounded (by ¢)

e over-approximates +, x:

BtoO(z + y) > BtoO(x) + BtoO(y)
e commutes with limits

(but not successors)
e BtoO is a simulation = WLPO

e LEM = BtoO is a simulation
e bounded (by Brw)

Connections between the notions

decidable par’FlaIIy undecidable
CoR decidable Bto0
to to
(W 4 b) > wB@ 1 CtoB(b) A XY :Brw).Y < A
® injective e injective
e preserves and reflects <, < e preserves <, <
e commutes with +, %, w” e over-approximates 4+, *:

BtoO(z + y) > BtoO(x) + BtoO(y)
e commutes with limits

(but not successors)
e BtoO is a simulation = WLPO

e bounded (by ¢)

e LEM = BtoO is a simulation
e bounded (by Brw)

Connections between the notions

decidable par’FlaIIy undecidable
CoR decidable Bto0
t t
(W 4 b) > W@ 1 CtoB(b) A XY :Brw).Y < A
® injective e injective
e preserves and reflects <, < e preserves <, <
e commutes with +, %, w” e over-approximates 4+, *:
e bounded (by &) BtoO(x + y). > E}th(x) + BtoO(y)
e commutes with limits

(but not successors)
e BtoO is a simulation = WLPO

e LEM = BtoO is a simulation
e bounded (by Brw)

Connections between the notions

decidable par’FlaIIy undecidable
CoR decidable Bto0
to to
(W 4 b) > W@ 1 CtoB(b) A XY :Brw).Y < A
® injective e injective
e preserves and reflects <, < e preserves <, <
e commutes with +, %, w” e over-approximates 4+, *:

BtoO(z + y) > BtoO(x) + BtoO(y)
e commutes with limits

(but not successors)
e BtoO is a simulation = WLPO

e bounded (by ¢)

e LEM = BtoO is a simulation
e bounded (by Brw)

