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What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, . . . , !, ! + 1, ! + 2, . . .

! · 2, ! · 2 + 1, . . . , !2, . . . , !2
· 3 + ! · 7 + 13, . . . ,

!!, . . . , "0 = !!!...

, . . . , "17, . . . , !1, . . .

Another answer: Sets with an order < which is

I transitive: (a < b) ! (b < c) ! (a < c)

I wellfounded: every sequence a0 > a1 > a2 > a3 > . . . terminates

I and trichotomous: (a < b) _ (a = b) _ (b < a)

I . . . or extensional (instead of trichotomous):
(8a.a < b $ a < c) ! b = c
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What are ordinals good for?

CS standard applications:
• proving termination of processes

(fun example: Hydra game)
• justifying recursive definitions /

(why does the Ackermann
function terminate?)

• . . .
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Ordinals in dependent type theory

Problem/feature of a constructive setting: different definitions differ!

Three standard notions of “ordinals” in computer science:

I Cantor normal forms
I Brouwer trees
I Wellfounded & extensional & transitive orders

What’s the connection? Why can we call them “ordinals”?

Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(ii) “correct” formulation of Brouwer trees (quotient inductive-inductively)
(iii) connections between the three notions and their arithmetic operations

⇒
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What do we expect of “ordinals”?

When does (O, <) deserve to be called “ordinals”?

(a) Wellfoundedness: Every decreasing sequence terminates / can do
transfinite induction.

(b) Arithmetic: Can do addition, multiplication, exponentiation, . . . (But what
does that mean?)

(c) Trichotomy: (a < b) _ (a = b) _ (b < a)

(d) Extensionality: (8a.a < b $ a < c) ! b = c

(e) Suprema/limits: Given a sequence, we can calculate its limit.

(f) Classifiability: If x : O, then x is a zero, a successor, or a limit.
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not necessarily!
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Cantor normal forms

Motivation: ↵ = !�1 + !�2 + · · ·+ !�n with �1 � �2 � · · · � �n

Let T be the type of unlabeled binary trees:

0 : T

!� +� : T ! T ! T

A tree is a Cantor normal form if �1 � �2 � · · · � �n (lexicographical order).

Cannot calculate limits of sequences, but everything else works
– including continuity of arithmetic operations!
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Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type O of Brouwer trees?

zero : O succ : O ! O sup : (N ! O) ! O

Problem: sup(0, 1, 2, 3, . . .) 6= sup(1, 2, 3, . . .)

How to fix this without losing wellfoundedness, validity of arithmetic operations,
and so on?
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Brouwer trees quotient inductive-inductively

(cubical Agda)

Not trichotomous (a < b undecidable), everything else works – notably
wellfoundedness and arithmetic. Caveat: Can’t define a · limit fi := limit (a · fi)
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Brouwer trees quotient inductive-inductively

(cubical Agda)

Not trichotomous (a < b undecidable), everything else works – notably
wellfoundedness and arithmetic.

Caveat: Can’t define a · limit fi := limit (a · fi)

Caveat:
Cannot definea.l.mil#)=limit(a.f..&



Extensional wellfounded orders

Definition of type Ord:
Pairs (X : Type,�: X ! X ! Prop) such that � is transitive, extensional,
wellfounded.
(X,�X)  (Y,�Y ) is given by:
A monotone function f : X ! Y
such that: if y �Y f x, then there is x0 �X x such that f x0 = y.

(Ord, <) is extensional and wellfounded, we has addition and multiplication, we
can calculate limits.

Unsurprisingly, nothing is decidable. E.g. deciding whether x : Ord is a successor
implies LEM (in the HoTT sense).
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Connections between the notions

Cnf Brw Ord

decidable partially
decidable undecidable

CtoB

(!a + b) 7! !CtoB(a) + CtoB(b)

• injective
• preserves and reflects <, 
• commutes with +, ⇤, !x

• bounded (by ✏0)

BtoO

A 7! ⌃(Y : Brw).Y < A

• injective
• preserves <, 
• over-approximates +, ⇤:
BtoO(x+ y) � BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation ) WLPO

• LEM ) BtoO is a simulation
• bounded (by Brw)
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• BtoO is a simulation ) WLPO

• LEM ) BtoO is a simulation
• bounded (by Brw)



Connections between the notions

Cnf Brw Ord

decidable partially
decidable undecidable

CtoB

(!a + b) 7! !CtoB(a) + CtoB(b)

• injective
• preserves and reflects <, 
• commutes with +, ⇤, !x

• bounded (by ✏0)

BtoO

A 7! ⌃(Y : Brw).Y < A

• injective
• preserves <, 
• over-approximates +, ⇤:
BtoO(x+ y) � BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation ) WLPO

• LEM ) BtoO is a simulation
• bounded (by Brw)


