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What are ordinals?

One answer: Numbers for counting/ordering:

0, 1, 2, 3, ..., w, w+1l, w+2,
w-2, w-2 What are ordinals good for?
W € CS standard applications:
e proving termination of processes
Another answer: (fun example: Hydra game)
> transitive: e justifying recursive definitions /

(why does the Ackermann

> wellfoundec function terminate?)
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Ordinals in dependent type theory

=> Problem /feature of a constructive setting: different definitions differ!
Three standard notions of “ordinals” in computer science:
» Cantor normal forms
» Brouwer trees
» Wellfounded & extensional & transitive orders

What's the connection? Why can we call them “ordinals”?

Developments in this paper:
(i) axiomatic framework for ordinals and ordinal arithmetic
(i) “correct” formulation of Brouwer trees (quotient inductive-inductively)

(iii) connections between the three notions and their arithmetic operations
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Cantor normal forms

Motivation: o = w”' + w2 + -« + WP with By > By > --- > B,

Let 7 be the type of unlabeled binary trees:

0 T
W= T=T—=T @/m-/o

A tree is a Cantor normal form if By > [ > -+ > B, (lexicographical order).

Cannot calculate limits of sequences, but everything else works
— including continuity of arithmetic operations!
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Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type O of Brouwer trees?

zero: O succ: O — O sup: (N—-O0)— 0O

Problem: sup(0,1,2,3,...) # sup(1,2,3,...)

How to fix this without losing wellfoundedness, validity of arithmetic operations,
and so on?




Brouwer trees quotient inductive-inductively

data Brw where

Zero
Succ

limit :

bisim

t

runc :

: Brw (cubical Agda)
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(f : N> Brw) - {fr : increasing f} - Brw

: vV f {fr} g {gr} -

:g-»
limit f {f+} = limit g {gt}
isSet Brw

data = where
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-succ-m
-cocone
-limiti
-trunc

: V {x} - zero = X
cV{xyz}-x=sy-y=sz->X
ono : Y {Xy} » X =y - succ x s succy
V¥V {x} f {ft k} - (x = f k) » (x = limit f {f1})
ng :Vf {fr x} »> ((k:N)->fk=x)-Tlimit f {ft} = x
: V {x y} - isProp (x =vy)
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Brouwer trees quotient inductive-inductively

data Brw where
zero : Brw (cubical Agda)
succ : Brw - Brw
limit : (f : N > Brw) - {ft : increasing f} - Brw
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Not trichotomous (a < b undecidable), everything else works — notably
wellfoundedness and arithmetic.
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such that: if y <y fx, then there is o <x x such that fzy=y.
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Extensional wellfounded orders

Definition of type Ord:

Pairs (X : Type, <: X — X — Prop) such that < is transitive, extensional,
wellfounded.

(X, <x) < (Y, <y) is given by:

A monotone function f: X — Y

such that: if y <y fx, then there is o <x x such that fzy=y.

(Ord, <) is extensional and wellfounded, we has addition and multiplication, we
can calculate limits.

Unsurprisingly, nothing is decidable. E.g. deciding whether x : Ord is a successor
implies LEM (in the HoTT sense).




Connections between the notions

- partially .
decidable ; s decidable - undecidablg
t t
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® injective e injective
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e commutes with +, *, w”

e bounded (by ¢)
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BtoO(z + y) > BtoO(x) + BtoO(y)
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(but not successors)
e BtoO is a simulation = WLPO

e LEM = BtoO is a simulation
e bounded (by Brw)
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