
Non-Recursive Truncations

Nicolai Kraus

University of Nottingham
nicolai.kraus@nottingham.ac.uk

Abstract

I discuss non-recursive higher inductive types in homotopy type theory, and universal properties of

truncations with respect to arbitrary types.

Homotopy type theory, often abbreviated as HoTT, is a branch of intensional Martin-Löf type
theory based on the observation that types can be interpreted as some form of spaces. Besides
univalent universes, the so-called higher inductive types (HITs) are a major new concept which
is considered in HoTT. These are a powerful generalisation of inductive types. A HIT has not
only constructors which define elements (point constructors), it may also have constructors that
define equalities (higher or path constructors). A popular example is the circle S1, which we can
represent by a point constructor base : S1 and a path constructor loop : base =S1 base. Another
seemingly innocent HIT is the one implementing the propositional truncation: For any type
A, we have the HIT ‖A‖ with one point constructor |−| : A→ ‖A‖ and one path constructor
t : Πx,y:‖A‖x = y. The propositional truncation is probably the most prominent concept that
can (non-trivially) be implemented as a HIT (see e.g. Awodey’s and Bauer’s bracket types in
extensional type theory [1]). The type ‖A‖ represents the proposition (i.e. has at most one
inhabitant) that A is inhabited without requiring a concrete element of A to be specified. Many
more examples of HITs can be found in the standard reference [5].

The HIT S1 is somewhat easy to visualise geometrically: first, we have a point; and second,
we have a path from this point to itself. This is a particularly easy example of a finitely
represented CW-complex (which already form a very well-behaved class of spaces themselves).
The universal property of S1 says that, for any type X, functions S1 → X correspond exactly to
pairs Σ (x : X) . x = x.

General HITs are much harder to understand because of the higher inductive component.
We say that S1 is a non-recursive HIT because no constructor quantifies over elements of S1
itself. In the presentation of ‖A‖ that we have given, the constructor t does quantify over
elements of ‖A‖ itself. This has the consequence that the induction and recursion principle, and
the universal property, are somewhat restricted: a priori, we know that functions ‖A‖ → X
correspond to functions A→ X, but only if X is propositional itself (i.e. fulfils the condition
posed by the constructor t).

The described situation gives rise to two related questions for a given (“recursive”) HIT H.
First, can we formulate a version of H’s universal property (or elimination principle) which is
applicable when eliminating into any type? And, second, can H be represented as a non-recursive
HIT, and does this give rise to a useful elimination principle into general types?

These questions are unsolved for a general H, but some answers have been found for the
canonical example – the propositional truncation. In this talk, I want to compare three different
constructions and results on this topic. The first can be found in my own article [3] (TYPES’14
post-proceedings), where I have shown a correspondence between coherently constant functions
A→ B and functions ‖A‖ → B. The second is van Doorn’s construction of the propositional
truncation as a non-recursive HIT [6] (CPP’16). The third is my construction of the propositional
truncation as a non-recursive HIT using a sequence of actual approximations [4] (to appear at
LICS’16). In some more detail, the three mentioned constructions can be described as follows:
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1. In [3], I have constructed coherently constant functions as morphisms between type-valued
presheaves. In type-theoretic notation, a coherently constant function is given by an infinite
tower of components, starting with: on level [0], a function f : A→ B; on level [1], a proof
c of “weak constancy”, i.e. c : wconstf :≡ Πa1,a2:Af(a1) = f(a2); on level [2], a proof of
coherence for c, in the sense of cohf,c :≡ Πa1,a2,a3:A(a1, a2) � c(a2, a3) = c(a1, a3); and so
on.
In the special case where B is n-truncated, all but the first (n + 2) components become
trivial and can be omitted. This gives a reasonably clean characterisation of maps ‖A‖ → B.
We can reformulate this finite case as follows: consider the HIT Hn(A) with a constructor
f : A→ Hn(A), a constructor c : wconstf , and so on (n + 2 constructors). Then, we have
the equivalence ‖Hn(A)‖n ' ‖A‖. Unfortunately, we cannot write down the “full” HIT
with infinitely many constructors.

2. Van Doorn has constructed ‖A‖ as a non-recursive HIT [6]. The idea is, from my point
of view, that we can simply take H0(A), i.e. drop all but the first two constructors, and
make up for this by iterating H0 infinitely often. This can be expressed as a colimit over a
graph and is thus internal. A shortcoming is that this construction is not well-behaved if
the iteration is done only finitely many times; as an example, already H0(H0(1)) is hard
to visualise. In particular,

∥∥H0(. . . (H0(A)) . . .)
∥∥
n

is nearly never equivalent to ‖A‖.
3. My construction in [4] is an attempt to internalise an idea of [3]. At the same time, it looks

similar to van Doorn’s construction in that it is the colimit of a sequence. The difference is
that van Doorn’s construction forces everything to become equal in each step (which is
much more than necessary), while mine only forces everything in some higher path space
to become equal, depending on which step we are at. This results in a sequence of actual
approximations of ‖A‖, in the sense that the “connectedness level” increases in every step.
The condition of the derived elimination principle is easier to satisfy than van Doorn’s, from
which we get a concrete consequence for the finite cases in [6]. It allows the formulation of
an elimination principle for k-truncations into n-types, generalising the main result of [2].
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