Non-Recursive Truncations

Nicolai Kraus

University of Nottingham

TYPES, Novi Sad
25 May 2016
Truncation

\[\exists(x : A), P(x) \] is not the same as \[\Sigma(x : A), P(x) \]

\[:= \| \Sigma(x : A), P(x) \| \]

Explanation: The [propositional] truncation \(\| - \| \) makes a type propositional (all elements equal).

<table>
<thead>
<tr>
<th>Rules for (| - |)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(| A |) is propositional</td>
</tr>
<tr>
<td>(| A | \rightarrow B)</td>
</tr>
<tr>
<td>(A \rightarrow | A |)</td>
</tr>
<tr>
<td>(| A | \rightarrow B \rightarrow)</td>
</tr>
<tr>
<td>(A \rightarrow B)</td>
</tr>
<tr>
<td>if (B) is propositional</td>
</tr>
</tbody>
</table>
But then, what is $\|A\| \rightarrow B$?

$\|A\| \rightarrow B$ is equivalent to ...

$\sum(f : A \rightarrow B)$, if B is (-1)-type
$\sum(c : \text{wconst}_f)$, if B is 0-type
$\sum(d : \text{coh}_{f,c})$, if B is 1-type

...

general B: infinitely many components!

note: $\text{wconst}_f \equiv \prod_{x,y:A} f x = f y$
$\text{coh}_{f,c} \equiv \prod_{x,y,z:A} c(x, y) \cdot c(y, z) = c(x, z)$
...
Theorem [K., TYPES 2014 proceedings]
We can define Reedy fibrant $\mathcal{T}A$ and $\mathcal{E}B : \Delta_+^{op} \to \text{Type}$ such that:

$$\langle \|A\| \to B \rangle \simeq \text{nat. trans. from } \mathcal{T}A \text{ to } \mathcal{E}B$$

in any type theory with $1, \Sigma, \Pi, \text{Id}, \text{fun.ext.}, \|_\|, \text{Reedy } \omega^{op}-\text{limits.}$

This (directly or indirectly) generalises

* Lurie, *Higher Topos Theory*, Prop. 6.2.3.4:
 ∞-semitopos instead of Type

* Rezk, *Toposes and Homotopy Toposes*, Prop. 7.8:
 model topos instead of Type
Truncation as a Higher Inductive Type

\[\|A\| \text{ as HIT} \]
(standard construction)
\[|_| : A \to \|A\| \]
\[t : \prod_{x,y:\|A\|} x = \|A\| y \]

Can we give an equivalent definition of \(\|A\| \) with a nicer elimination principle?

1\(^{st}\) approximation: \(A_1 \)
\[f : A \to A_1 \]

2\(^{nd}\) approximation: \(A_2 \)
\[f : A \to A_2 \]
\[c : w\text{const}_f \]

3\(^{rd}\) approximation: \(A_3 \)
\[f : A \to A_3 \]
\[c : w\text{const}_f \]
\[d : \text{coh}_{f,c} \]

\[\|A\| \simeq \|A_1\|_0 \simeq \|A_2\|_1 \simeq \ldots \]
Easier elimination principle into 0-, or 1-, or \ldots-types!
Purely non-recursive representations, I

We could try to consider the homotopy colimit of

\[A_1 \to A_2 \to A_3 \to \ldots \]

which should be \(\| A \| \).

Problem: for any \(n \), we can write down \(A_n \). However, we cannot write down \(A : \mathbb{N} \to U \).

(“Semisimplicial Types Phenomenon”)
Purely non-recursive representations, II

Solution: Make the sequence $A_1 \to A_2 \to A_3 \to \ldots$ “coarser”.

* van Doorn (CPP’16), independent of my analysis: do the first approximation in every step (easy to prove correct, but no finite special cases).

* K. (LiCS’16): construct A_{n+1} by taking A_n and adding fillers for $S^{n-1} \to A_n$ (harder to prove correct, but useful finite special cases);

Any sequence of weakly constant functions has a propositional colimit!

* Rijke - van Doorn / Buchholtz - Rijke, wip: localizations and related constructions

Thank you! Any comments or questions?