On the Role of Semisimplicial Types

An open problem in homotopy type theoy

Nicolai Kraus Braga, 18 June'18

On the Role of Semisimplicial Types

An open problem in homotopy type theoy

Nicolai Kraus Braga, 18 June'18

What are semisimplicial types? What's the open problem?

Why is this important?

Semisimplicial types

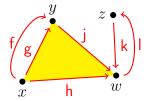
A semisimplicial type restricted to level 2 is a triple $\left(A_{0},A_{1},A_{2}\right)$ of types:

 $\begin{array}{l} A_0:\mathbf{Type}\\ A_1:A_0\to A_0\to\mathbf{Type}\\ A_2:(x,y,z:A_0)\to A_1(x,y)\to A_1(y,z)\to A_1(x,z)\to\mathbf{Type} \end{array}$

Semisimplicial types

A semisimplicial type restricted to level 2 is a triple (A_0, A_1, A_2) of types:

$$\begin{array}{l} A_0: \mathbf{Type} \\ A_1: A_0 \to A_0 \to \mathbf{Type} \\ A_2: (x, y, z: A_0) \to A_1(x, y) \to A_1(y, z) \to A_1(x, z) \to \mathbf{Type} \end{array}$$



Example:

$$A_0 \equiv \{x, y, z, w\}$$

 $A_1(x, y) \equiv \{f, g\}$
 $A_1(x, w) \equiv \{h\}, \dots$
 $A_2(x, y, w, g, j, h) \equiv yellow \Delta$

 $\begin{array}{l} \mbox{Can we define $\mathbf{F}:\mathbb{N}\to\mathbf{Type_1}$ such that $\mathbf{F}(n)$ \\ encodes the type of tuples $(\mathbf{A_0},\ldots,\mathbf{A_n})$? \\ \mbox{Can we define the type of "infinite tuples" $(\mathbf{A_0},\mathbf{A_1},\ldots)$? } \end{array}$

Unknown in "book HoTT"!

Can we define $\mathbf{F} : \mathbb{N} \to \mathbf{Type_1}$ such that $\mathbf{F}(\mathbf{n})$ encodes the type of tuples $(\mathbf{A_0}, \dots, \mathbf{A_n})$? Can we define the type of "infinite tuples" $(\mathbf{A_0}, \mathbf{A_1}, \dots)$? **Unknown** in "book HoTT"!

Remark: We actually want a type of diagrams $\Delta^{op}_+ \to \mathbf{Type}$. Δ^{op}_+ is the category [0] [1] [2] [2] [2] \cdots **Type** is the (∞ -) category of types and functions.

 $\begin{array}{l} \mbox{Can we define $\mathbf{F}:\mathbb{N}\to\mathbf{Type_1}$ such that $\mathbf{F}(\mathbf{n})$ \\ encodes the type of tuples $(\mathbf{A_0},\ldots,\mathbf{A_n})$? \\ \mbox{Can we define the type of "infinite tuples" $(\mathbf{A_0},\mathbf{A_1},\ldots)$? } \end{array}$

Unknown in "book HoTT"!

Remark: We actually want a type of diagrams $\Delta^{op}_{\pm} \rightarrow Type$. $\Delta^{\mathsf{op}}_{\pm}$ is the category $[0] = [1] = [2] = \cdots$ **Type** is the $(\infty$ -) category of types and functions. Semisimplicial types are an encoding avoiding equalities! (A_0, A_1, A_2) encodes: $[0] \mapsto A_0$ $[1] \mapsto \Sigma(x, y : A_0), A_1(x, y)$ $[2] \mapsto \Sigma x, y, z, f, q, h, A_2(x, y, z, f, q, h)$

While semisimplicial types are unsolved in "book HoTT", they work in other settings:

- Voevodsky's HTS (homotopy type system)
- many models (c.f. Shulman's work)
- > 2LTT (2-level type theory) by Capriotti et al. is flexible:
 - plain 2LTT \approx book HoTT (Capr.)
 - ▶ 2LTT + axiom "external \mathbb{N} is \mathbb{N} " \approx HTS (Hofmann)
 - > 2LTT + axiom "towers of fibrations have limits" $\,\,pprox\,$

Shulman's condition

- Boulier-Tabareau's version of HTS/2LTT
- Part-Luo's logic-enriched HoTT
- ▶ some "cubical 2LTT's" (Angiuli, Favonia, Harper)
- ...?

Why do we **want** to define semisimplicial types?

- (1) Because it looks like it should be possible...
- (2) For higher categories
- (3) For "HoTT eating HoTT" (conjectured)
- (4) For certain "internal elementary" open problems (conjectured).

Let's talk about (2), (4).

Higher univalent categories

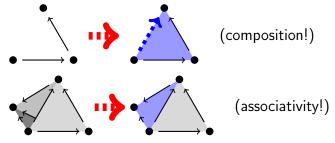
Capriotti-K., POPL'18:

- ► A univalent (n,1)-category is a semisimplicial type (A₀,..., A_{n+2}) with two (three) propositional properties
- \blacktriangleright This coincides with the "manual" definitions on levels ≤ 2

Higher univalent categories

Capriotti-K., POPL'18:

- ► A univalent (n,1)-category is a semisimplicial type (A₀,...,A_{n+2}) with two (three) propositional properties
- \blacktriangleright This coincides with the "manual" definitions on levels ≤ 2
- one of the properties is the *Segal condition* (horn filling):



identities come from the *completeness* property

Internal elementary Problems

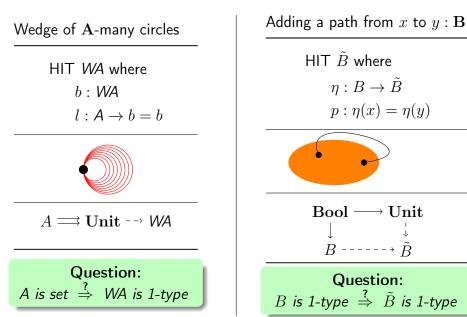
Wedge of \mathbf{A} -many circles

HIT *WA* where b: WA $l: A \rightarrow b = b$

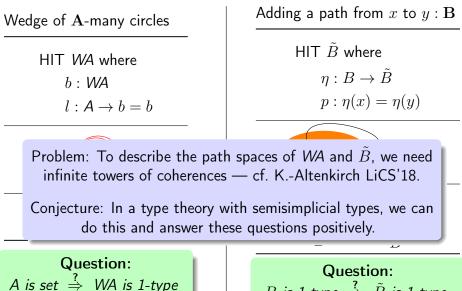
$$A \Longrightarrow \mathbf{Unit} \dashrightarrow W\!A$$

Question:A is set
$$\stackrel{?}{\Rightarrow}$$
 WA is 1-type

Internal elementary Problems



Internal elementary Problems



 $B \text{ is } 1\text{-type} \stackrel{?}{\Rightarrow} \tilde{B} \text{ is } 1\text{-type}$