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Semisimplicial types
A semisimplicial type restricted to level 2 is a triple
(A0, A1, A2) of types:

A0 : Type

A1 : A0 → A0 → Type

A2 : (x, y, z : A0)→ A1(x, y)→ A1(y, z)→ A1(x, z)→ Type
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Example:
A0 ≡ {x, y, z, w}
A1(x, y) ≡ {f, g}
A1(x,w) ≡ {h}, . . .
A2(x, y, w, g, j, h) ≡ yellow ∆



Can we define semisimplicial types?
Can we define F : N→ Type1 such that F(n)
encodes the type of tuples (A0, . . . ,An) ?

Can we define the type of “infinite tuples” (A0,A1, . . .)?

Unknown in “book HoTT”!

Remark: We actually want a type of diagrams ∆op
+ → Type.

∆op
+ is the category [0] [1] [2] . . .

Type is the (∞-) category of types and functions.

Semisimplicial types are an encoding avoiding equalities!
(A0, A1, A2) encodes: [0] 7→ A0

[1] 7→ Σ(x, y : A0), A1(x, y)

[2] 7→ Σx, y, z, f, g, h, A2(x, y, z, f, g, h)
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Can we define semisimplicial types?
While semisimplicial types are unsolved in “book HoTT”, they
work in other settings:

I Voevodsky’s HTS (homotopy type system)
I many models (c.f. Shulman’s work)
I 2LTT (2-level type theory) by Capriotti et al. is flexible:

I plain 2LTT ≈ book HoTT (Capr.)
I 2LTT + axiom “external N is N” ≈ HTS (Hofmann)
I 2LTT + axiom “towers of fibrations have limits” ≈

Shulman’s condition
I Boulier-Tabareau’s version of HTS/2LTT
I Part-Luo’s logic-enriched HoTT
I some “cubical 2LTT’s” (Angiuli, Favonia, Harper)
I . . . ?



Why do we want to define semisimplicial types?

(1) Because it looks like it should be possible. . .

(2) For higher categories

(3) For “HoTT eating HoTT” (conjectured)

(4) For certain “internal elementary” open problems
(conjectured).

Let’s talk about (2), (4).



Higher univalent categories
Capriotti-K., POPL’18:

I A univalent (n,1)-category is a semisimplicial type
(A0, . . . , An+2) with two (three) propositional properties

I This coincides with the “manual” definitions on levels ≤ 2

I one of the properties is the Segal condition (horn filling):

(composition!)

(associativity!)

I identities come from the completeness property
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Internal elementary Problems

Wedge of A-many circles

HIT WA where
b : WA
l : A→ b = b

A Unit WA

Question:
A is set ?⇒ WA is 1-type

Adding a path from x to y : B

HIT B̃ where

η : B → B̃

p : η(x) = η(y)

Bool Unit

B B̃

Question:
B is 1-type ?⇒ B̃ is 1-type

Problem: To describe the path spaces of WA and B̃, we need
infinite towers of coherences — cf. K.-Altenkirch LiCS’18.

Conjecture: In a type theory with semisimplicial types, we can
do this and answer these questions positively.
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