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CwpF definition as a Generalised Algebraic Theory

Type
Con — Con — Type

SubO A — SubI’'© — SubT' A

(cod)ov=00(dov)
SubI'T’

idoo =0

coid=o
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SubT'e

V(o :SubTe).0c =€
Con — Type

TyA — SubT'A — Ty T
Alid)T = A

Alood]" = Alo]T[0]"

(': Con) —» TyT' — Type

TmAA— (0:SubT’A) = TmT (Afo]")

tfid]t = over [id]T
tlo o 8]t = t[o]'[6]"t over [o]T
(': Con) —» Ty’ — Con

Sub (D> A)T

Tm (D> 4) (Afp]T)

(0:SubT' A) = TmT (A[o]T) — SubT (A A)
po(o,t)=0

qlo, t]" = tt over [0]T and B
(p,q) =id
(o,t) ov = (g ov,ty])t over [o]T

(Good definition in a
type theory with K/UIP)
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First example: the syntax / (intended) initial CwF

Possible implementation:
(1) via raw syntax
e possibly ill-typed expressions plus wellformedness predicates

= Initial by the Initiality Theorem
(Brunerie, de Boer, Lumsdaine, Mortberg 2019-20).

(1) via a a quotient inductive-inductive type (Altenkirch-Kaposi 2016)

e mutually defined inductive families Con, Sub, Ty, Tm
e a constructor for every component of the previous

= Initial by construction.
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Second example of a CwF: “Standard Model”, a.k.a.
the universe with the obvious structure

e Con is the universe U
e SubI'A s the function type (I' = A)
e TyI' is given as (I' = U)

e TmI'A isgivenasIl(z:I).(Ax)

all operations are canonical

all equations hold judgmentally (assuming enough 7-laws)
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The trouble with(out) UIP

Recall: UIP (uniqueness of identity proofs) a.k.a. Axiom K says:

Mxy:A)II(pq:x=y).(p=q)

The above definition of a CwF works assuming this axiom!

What if UIP is not assumed (or even inconsistent, e.g. in homotopy type theory)?
Two obvious approaches:

(1) Ignore it: Do everything as before.
or

(I1) Make up for it: Assume that Con, Sub, Ty, Tm
are families of h-sets.



The trouble with(out) UIP

Recall: UIP (uniqueness of identity proofs) a.k.a. Axiom K says:

Mxy:A)II(pq:x=y).(p=q)

The above definition of a CwF works assuming this axiom!

What if UIP is not assumed (or even inconsistent, e.g. in homotopy type theory)?

Two obvious approaches:

(1) Ignore it: Do everything as before.
or

(I1) Make up for it: Assume that Con, Sub, Ty, Tm
are families of h-sets.




The trouble with(out) UIP

Recall: UIP (uniqueness of identity proofs) a.k.a. Axiom K says:

Mxy:A)II(pq:x=y).(p=q)

The above definition of a CwF works assuming this axiom!

What if UIP is not assumed (or even inconsistent, e.g. in homotopy type theory)?

Two obvious approaches:

(1) Ignore it: Do everything as before.
or

(I1) Make up for it: Assume that Con, Sub, Ty, Tm
are families of h-sets.




No UIP: problems of the obvious approaches

(1) Ignore the absence of UIP: Do everything as before.

But then: dl,: idoo=o¢
idry, : ooid=o0¢

Initial model (w/ base types) does not satisfyjidliy = idrig.

= Initial model is not based on h-sets & does not have decidable equality.
= The “syntax” (first example) is not initial.

(I1) Bake UIP into the definition of CWF: Require Con etc. to be h-sets.

Typical “HoTT solution”.
But: The universe is not an h-set.
= The “standard model" (second) fails.
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Why we really want both examples (syntax and standard model)

Shulman 2014:
Is the n*® universe a model of HoTT with (n-1) universes?

l.e.: Can we define the syntax and interpret it in U,,?

Work by: Escardé-Xu, K., Bucholtz, Lumsdaine, Kaposi-Kovacs, Altenkirch, ...

However: Even the simplest® version of this is still open!
! (where the core problem occurs)

The two examples would give us:

Syntax |n|t|a||ty theorem Syntax by |n|t|a||ty universe U
(raw) |’ “I(as QIIT) (standard model)
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Back to the definition from slide 4:

Con Type Tm : (I': Con) — Ty — Type
Sub : Con — Con — Type [1': TmAA s (0:SubTA) = TmT (Afo]")
o : Sub®A — SubI'©® — SubT" A + t T
- - [id] c tlid] =t over [id]
assoc : (cod)ov=o0c0(dov)
RF i tlood]t = t[o]t[6]t over [o]T
id . SubT'T 2
s .
idly : idoo=o J/ fiy) /‘,0[ > _: (I':Con) = Ty — Con
idry  : ocoid=o ) ,,{ “ P : Sub(I'> A)T
. . Con a ¢ Tm (Do A) (Alp]T)
€ . SubTe . ¢ (0:SubT'A) - TmT (A[o]') = SubT (A > A)
o1 : V(o :SubTe). o =c¢ >B1 : po(o,t) =0
Ty . Con — Type >P2 o qlo, 8]t = tt over [<>]T and b1
> : (p,q)=id
(1" TyA 5 SwbTA - TyT (@) . .
, 0 : (oyt)ov = (cov,tv])t over [¢
idT o AfidT =4 i fe]
]l Alood] = Alo]"[8]"

Goal: Make this coherent! E.g. we really need idliqy = idrq.
Brutal method: Require h-sets everywhere (too restrictive).
Proposed method: Use higher categories = (00, 1)-CwF's.
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a context extension operation.

We need to oo-categorify everything.
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What is an oco-category? Model used: Rezk's Segal spaces.

Strategy:
(1) Start with a semisimplicial type (“basic data”)
(2) Add Segal condition (= oo-semicategory)

(3) Add identities (= oco-category)
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(1) Recall:[semisimplicial type up to dimension 2|is tuple (A, A1, Ay) where

Ap : Type
Al : AO — AO — Type
Ay T{zyz: Ao}t (Arzy) = (A1yz) — (A 2) — Type
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(2) Adding the Segal condition

Semicategory (beginning) Semisimplicial type (beginning)
Ob : Type Ag : Type
Hom : Ob — Ob — Type Ay Ag — Ay — Type
~ o :{zyz:0b} - (Homyz) Ay {zxyz: Ao} = (A1y2)
— (Homzy) — (Homx z) — (A zy) — (A xz) — Type

Lemma: For X : Type, we have X ~ (P : X — Type).
isContr(X(z : X).Px).
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(2) Adding the Segal condition

Semicategory (beginning) Semisimplicial type (beginning)
Ob : Type < ) Ag : Type
Hom : Ob — Ob — Type & )Al Ay — Ay — Type
_:{zyz:0b} — (Ho /rle_Z—)HAQ Hryz: Ao} = (Aryz)
— (Hom z y) —>r;H mxzz\) — (A zy) —>’ (Alacz) — Typ\el

_ = e~ 7

SIS Aj’é 17))[{’/1,7)

> sl (Zh: Arx)) )



(3) Add identities/degeneracies

In previous work: Completeness (Lurie/Harpaz/Capriotti) corresponding to
univalent identities (cf. Capriotti-Kraus 2018).

Here: We don't want built-in univalence. Instead:

Def: Aline f: Ay xx is a good identity if it is an idempotent equivalence.

Def: f is idempotentif Ay f f f. Def: f is an equivalence if pre- and
post-composition with f is.
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Definition: A semicategory (higher semicategory, semi-Segal type)
has a good identity structure if every object (point)
is equipped with an idempotent equivalence.

Theorem: “Having a good identity structure’:
— is a propositional property; and
— generates all degeneracies; and
— is interderivable with a “standard” identity structure
(id with idl and idr).

Definition: An oo-category is a semisimplicial type
which satisfies the Segal condition and has a good
identity structure.

(Extending oo-categories to co-CwF's is not done in this talk.)
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Done:

e Every h-set-based 1-CwF is an co-CwF
= the syntax is an co-CwF

e Every “wild" 1-CwF, where equations hold strictly, is an co-CwF
= standard model (universe) is an oo-CwF
e Other constructions, e.g. slice co-CwF (“working with assumptions’)

Main unsolved problem:

e |s the syntax initial?

And: How about other settings (not 2LTT)?
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