Internal oo-Categorical Models of Dependent
Type Theory

Towards 2LTT Eating HoTT

Nicolai Kraus

LICS'21 (Rome/online), 29 June 2021

Goal: Define what a model of type theory is
— in type theory!
(in particular: intended initial model ~ “syntax”)

Goal: Define what a model of type theory is
— in type theory!
(in particular: intended initial model ~ “syntax”)

Peter Dybjer, 2005: Internal Type Theory) — Category with Families (“CwF")

Danielsson 2006

Chapman 2009

McBride 2010

Shulman 2014

Escardo-Xu 2014

K. 2015

Altenkirch-Kaposi 2016
Bucholtz 2017
Abel-Ohman-Vezzosi 2017
Ahrens-Lumsdaine-Voevodsky 2017/18
Brunerie-de Boer 2018-20
Lumsdaine-Mdortberg 2018-20

Kaposi-Kovacs-K., 2019

Goal: Define what a model of type theory is
— in type theory!
(in particular: intended initial model ~ “syntax”)

Peter Dybjer, 2005: Internal Type Theory — Cate

Danielsson 2006

Chapman 2009

McBride 2010

Shulman 2014

Escardo-Xu 2014

K. 2015

Altenkirch-Kaposi 2016
Bucholtz 2017
Abel-Ohman-Vezzosi 2017
Ahrens-Lumsdaine-Voevodsky 2017/18
Brunerie-de Boer 2018-20
Lumsdaine-Mdortberg 2018-20

Kaposi-Kovacs-K., 2019

ory with Families (“CwF")

record CwF : Set: where
field
Con : Set
Sub : Con -» Con - Set
Ty : Con - Set

Tm : (F : Con) - Ty I - Set

: Con
» : (F: Con) »Ty I - Con

-- (and so on)

Goal: Define what a model of type theory is
— in type theory!
(in particular: intended initial model ~ “syntax”)

Peter Dybjer, 2005: Internal Type Theory

Danielsson 2006

Chapman 2009

McBride 2010

Shulman 2014

Escardo-Xu 2014

K. 2015
Altenkirch-Kaposi 2016
Bucholtz 2017
Abel-Ohman-Vezzosi 2017
Ahrens-Lumsdaine-Voevodsky 2017/18
Brunerie-de Boer 2018-20
Lumsdaine-Mdortberg 2018-20

Kaposi-Kovacs-K., 2019

— Category with Families (“CwF")

record CwF : Set: where
field
Con : Set
Sub : Con -» Con - Set
Ty : Con - Set
Tm : (F : Con) - Ty I - Set

° : Con
» : (F:Con) - Ty I' » Con

CwpF definition as a Generalised Algebraic Theory

Type
Con — Con — Type

SubO A — SubI’'© — SubT' A

(cod)ov=00(dov)
SubI'T’

idoo =0

coid=o

Con

SubT'e

V(o :SubTe).0c =€
Con — Type

TyA — SubT'A — Ty T
Alid)T = A

Alood]" = Alo]T[0]"

(': Con) —» TyT' — Type

TmAA— (0:SubT’A) = TmT (Afo]")

tfid]t = over [id]T
tlo o 8]t = t[o]'[6]"t over [o]T
(': Con) —» Ty’ — Con

Sub (D> A)T

Tm (D> 4) (Afp]T)

(0:SubT' A) = TmT (A[o]T) — SubT (A A)
po(o,t)=0

qlo, t]" = tt over [0]T and B
(p,q) =id
(o,t) ov = (g ov,ty])t over [o]T

(Good definition in a
type theory with K/UIP)

CwpF definition as a Generalised Algebraic Theory

Con : ?ype
Sub : Con — Con — Type
o _: Sub®A — SubI'© — SubT' A
assoc : (cod)ov=c0o(dov)
id : SubI'l 4
e eom
idls : idoo=o a
idr : _goid=o
. : Con
€ : SubTe
o : V(o :SubTe).0c=¢€
Ty : Con — Type
[7: TyA—=SubT'A—= Tyl
id]"™ : Ald"T=A
T i Alood]” = Alo]T8]"

Tm

[T

lid]"

[o]*

(': Con) —» TyT' — Type

TmAA— (0:SubT’A) = TmT (Afo]")

tfid]t = over [id]T
tlo o 8]t = t[o]'[6]"t over [o]T
(': Con) —» Ty’ — Con

Sub(I'> A)T

Tm (D> 4) (Afp]T)

(0:SubT' A) = TmT (A[o]T) — SubT (A A)
po(o,t)=0

qlo, t]" = tt over [0]T and B
(p,q) =id
(o,t) ov = (g ov,ty])t over [o]T

(Good definition in a
type theory with K/UIP)

CwpF definition as a Generalised Algebraic Theory

?ype
Con — Con — Type
SubO® A — SubT’'® — SubT' A

(cod)ov=00(dov)

SubI'T 4
idoo =0 ca a“/

goid =0

Con fum, HM

SubT e
V(o : SubT's). 0 =

%} ZJL

Con — Type

TyA — SubT'A — Ty T
Alid]T =
[U<>5}T Alo])T[o]"

Tm : (I': Con) —» Ty’ — Type

' TmAA—= (0:SubT A) = TmT (Afo]T)
lidt & ¢tfidt=¢ over [id]T
[o]* ¢ tlo o8]t = tlo]'[o]" over [o]T
> _: (I':Con) = Ty = Con

p : Sub('>A)T

a o Tm(TeA)(Ap])

, : (0:SubT' A) = TmT (Afo]T) — SubT (A > A)
>p1 : po(ot)=0

b2 qloyt]' =1t over [0]T and B
| : (p,q) =id
, 0 ¢ (o, t)ov = (covtv])t over [o]T

(Good definition in a
type theory with K/UIP)

CwpF definition as a Generalised Algebraic Theory

Con ?ype
Sub Con — Con — Type
o Sub®A — SubT'© — SubT"' A
assoc (cod)ov=00(dov)
id SubT'T" 4
e eom
idl, idoo =0 a
idr goid =0
o Con
€ SubT e ‘é&v’mmm/(b 3}
o1 V(o :SubTe). 0 =€ ()
Ty Con — Type
[7: TyA—=SubT'A—= Tyl
fid] " Aflid]" = ffé’gl#
[o]" [005]T Alo])T[o]"

Tm : (I': Con) —» Ty’ — Type

' TmAA—= (0:SubT A) = TmT (Afo]T)
lidt & ¢tfidt=¢ over [id]T
[o]* ¢ tlo o8]t = tlo]'[o]" over [o]T
> _: (I':Con) = Ty = Con

p : Sub('>A)T

a o Tm(TeA)(Ap])

, : (0:SubT' A) = TmT (Afo]T) — SubT (A > A)
>p1 : po(ot)=0

b2 qloyt]' =1t over [0]T and B
| : (p,q) =id
, 0 ¢ (o, t)ov = (covtv])t over [o]T

(Good definition in a
type theory with K/UIP)

CwpF definition as a Generalised Algebraic Theory

Con ?ype
Sub Con — Con — Type
o Sub®A — SubT'© — SubT"' A
assoc (cod)ov=0c0(dov)
id SubT'T" 4
e eam
idl, idoo =0 a
idr goid =0
o Con
€ SubT e ‘é&v’mmm/(b 3}
o1 V(o :SubTe). 0 =€ ()
Ty Con — Type
[7: TyA—=SubT'A—= Tyl
fid] " Aflid]" = ffé’gl#
[o]" [005]T Alo])T[o]"

Tm : (I': Con) —» Ty’ — Type Oungl .
(] TmAA— (o SubFA)%TmFtv(:[?f—] f“ 0107/
d* = tlid*=¢t over [id]T

[o]* ¢ tlo o8]t = tlo]'[o]" over [o]T

> _: (I':Con) = Ty = Con

p : Sub('>A)T

a : Tm(@T>A) (AR

, i (0:SubT'A) = TmT (A[o]") — SubT (A A)

>p1 : po(ot)=0

b2 qloyt]' =1t over [0]T and B
e (pg) =id

, 0 ¢ (o, t)ov = (covtv])t over [o]T

(Good definition in a
type theory with K/UIP)

CwpF definition as a Generalised Algebraic Theory

Con ?ype
Sub Con — Con — Type
o Sub®A — SubT'© — SubT"' A
assoc (cod)ov=0c0(dov)
id SubT'T" 4
e eam
idl, idoo =0 a
idr goid =0
o Con
€ SubT e ‘é&v’mmm/(b 3}
o1 V(o :SubTe). 0 =€ ()
Ty Con — Type
[7: TyA—=SubT'A—= Tyl
fid] " Aflid]" = ffé’gl#
[o]" [005]T Alo])T[o]"

Tm

[T

lid]*

(T': Con) — Ty’ — Type Ongdher f“ P 0/0.(
TmAA = (5:SubT A) — TmT (Alo]")

tlid]* =¢ over [id]T
tlo o 8]t = t[o]'[6]"t over [o]T
(': Con) —» Ty’ — Con
Sub(I'> A)T
Tm (I'> A) (Alp]")
(0:SubT' A) = TmT (A[o]T) — SubT (A A)
po(o,t)=0
qlo, t]" = tt
(p,q) =id

(o,t) ov = (g ov,ty])t

J%(l &f'[h'v(a-g

over [0]T and B

over [o]T

(Good definition in a
type theory with K/UIP)

CwrF definition as a Generalised Algebraic Theory

Con : Type Tm : (I': Con) —» Ty’ — Type

Sub : Con — Con — Type ' TmAA—= (0:SubT A) = TmT (Afo]T)
o _: Sub®A — SubI'© — SubT' A fid]t tid]t = ¢ over [id]"
assoc : (cod)ov=oc0o(dov) [o]t . tlo o o)t = to]t o]t over [o]T
id ¢ SubI'™

Wl idoo St B

idr, : ooid ® Altenkirch and Kaposi, Type Theory in Type Theory using
Quotient Inductive Types, 2016

. : Con]) ST (A5 A)

€ : SubT e Kaposi, Huber, and Sattler, Gluing for Type Theory, 2019

" P Vo Sioee = b2 qloyt]' =1t over [0]T and B
Ty : Con — Type b1 : (p,q) =id

[)T: TyA = Subl'A — Tyl o i (o) ov = (oot over [o]T

id]"™ : Ald"T=A

T i Alood]” = Alo]T8]"

(Good definition in a
type theory with K/UIP)

First example: the syntax / (intended) initial CwF

Possible implementation:
(1) via raw syntax
e possibly ill-typed expressions plus wellformedness predicates

= Initial by the Initiality Theorem
(Brunerie, de Boer, Lumsdaine, Mortberg 2019-20).

(1) via a a quotient inductive-inductive type (Altenkirch-Kaposi 2016)

e mutually defined inductive families Con, Sub, Ty, Tm
e a constructor for every component of the previous

= Initial by construction.

First example: the syntax / (intended) initial CwF

Possible implementation:

(1) via raw syntax
e possibly ill-typed expressions plus wellformedness predicates

= Initial by the Initiality Theorem
(Brunerie, de Boer, Lumsdaine, Mortberg 2019-20).

(1) via a a quotient inductive-inductive type (Altenkirch-Kaposi 2016)

e mutually defined inductive families Con, Sub, Ty, Tm
e a constructor for every component of the previous

= Initial by construction.

First example: the syntax / (intended) initial CwF

Possible implementation:
(1) via raw syntax
e possibly ill-typed expressions plus wellformedness predicates

= Initial by the Initiality Theorem
(Brunerie, de Boer, Lumsdaine, Mortberg 2019-20).

(1) via a a quotient inductive-inductive type (Altenkirch-Kaposi 2016)

e mutually defined inductive families Con, Sub, Ty, Tm
e a constructor for every component of the previous

= Initial by construction.

Second example of a CwF: “Standard Model”, a.k.a.
the universe with the obvious structure

e Con is the universe U
e SubI'A s the function type (I' = A)
e TyI' is given as (I' = U)

e TmI'A isgivenasIl(z:I).(Ax)

all operations are canonical

all equations hold judgmentally (assuming enough 7-laws)

Second example of a CwF: “Standard Model”, a.k.a.
the universe with the obvious structure

) e Con is the universe@

SubI' A s the function type (I' = A)
Tyl is given as (I' = U)
e TmI'A isgivenasIl(z:I).(Ax)

all operations are canonical

all equations hold judgmentally (assuming enough 7-laws)

Second example of a CwF: “Standard Model”, a.k.a.
the universe with the obvious structure

e Con is the universe U
‘:; e SubI’ A s the function type
o Tyl is given as (I' = U)

e TmI'A isgivenasIl(z:I).(Ax)
e all operations are canonical

e all equations hold judgmentally (assuming enough 7-laws)

Second example of a CwF: “Standard Model”, a.k.a.
the universe with the obvious structure
e Con is the universe U
e SubI'A s the function type (I' = A)
:). Tyl is given a
e TmI'A isgivenasIl(z:I).(Ax)
e all operations are canonical

e all equations hold judgmentally (assuming enough 7-laws)

Second example of a CwF: “Standard Model”, a.k.a.
the universe with the obvious structure

e Con is the universe U
e SubI'A s the function type (I' = A)
e TyI' is given as (I' = U)

“90 TmI A s given as

e all operations are canonical

e all equations hold judgmentally (assuming enough 7-laws)

Second example of a CwF: “Standard Model”, a.k.a.
the universe with the obvious structure

e Con is the universe U
e SubI'A s the function type (I' = A)
e Tyl is given as (I' = U)

e TmI'A isgivenasIl(z:I).(Ax)

all operations are canonical

all equations hold judgmentally (assuming enough 7-laws)

e.g /Bo/ﬂ

The trouble with(out) UIP

Recall: UIP (uniqueness of identity proofs) a.k.a. Axiom K says:

Mxy:A)II(pq:x=y).(p=q)

The above definition of a CwF works assuming this axiom!

What if UIP is not assumed (or even inconsistent, e.g. in homotopy type theory)?
Two obvious approaches:

(1) Ignore it: Do everything as before.
or

(I1) Make up for it: Assume that Con, Sub, Ty, Tm
are families of h-sets.

The trouble with(out) UIP

Recall: UIP (uniqueness of identity proofs) a.k.a. Axiom K says:

Mxy:A)II(pq:x=y).(p=q)

The above definition of a CwF works assuming this axiom!

What if UIP is not assumed (or even inconsistent, e.g. in homotopy type theory)?

Two obvious approaches:

(1) Ignore it: Do everything as before.
or

(I1) Make up for it: Assume that Con, Sub, Ty, Tm
are families of h-sets.

The trouble with(out) UIP

Recall: UIP (uniqueness of identity proofs) a.k.a. Axiom K says:

Mxy:A)II(pq:x=y).(p=q)

The above definition of a CwF works assuming this axiom!

What if UIP is not assumed (or even inconsistent, e.g. in homotopy type theory)?

Two obvious approaches:

(1) Ignore it: Do everything as before.
or

(I1) Make up for it: Assume that Con, Sub, Ty, Tm
are families of h-sets.

No UIP: problems of the obvious approaches

(1) Ignore the absence of UIP: Do everything as before.

But then: dl,: idoo=o¢
idry, : ooid=o0¢

Initial model (w/ base types) does not satisfyjidliy = idrig.

= Initial model is not based on h-sets & does not have decidable equality.
= The “syntax” (first example) is not initial.

(I1) Bake UIP into the definition of CWF: Require Con etc. to be h-sets.

Typical “HoTT solution”.
But: The universe is not an h-set.
= The “standard model" (second) fails.

No UIP: problems of the obvious approaches
(1) Ignore the absence of UIP: Do everything as before.

But then: dl,: idoo=o¢
idry, : ooid=o0¢
Initial model (w/ base types) does not satisfy idliy = idrig.
= Initial model is not based on h-sets & does not have decidable equality.
= The “syntax” (first example) is not initial.

(I1) Bake UIP into the definition of CWF{ Require Con etc. to be h-sets.

Typical “HoTT solution”.
But: The universe is not an h-set.
= The “standard model" (second) fails.

No UIP: problems of the obvious approaches
(1) Ignore the absence of UIP: Do everything as before.

But then: dl,: idoo=o¢
idry, : ooid=o0¢

Initial model (w/ base types) does not satisfy idliy = idrig.
= Initial model is not based on h-sets & does not have decidable equality.
= The “syntax” (first example) is not initial.

(I1) Bake UIP into the definition of CWF: Require Con etc. to be h-sets.

Typical “HoTT solution”.

But: The universe is not an h-set.
= The “standard model" (second) fails.

Why we really want both examples (syntax and standard model)

Shulman 2014:
Is the n*® universe a model of HoTT with (n-1) universes?

l.e.: Can we define the syntax and interpret it in U,,?

Work by: Escardé-Xu, K., Bucholtz, Lumsdaine, Kaposi-Kovacs, Altenkirch, ...

However: Even the simplest® version of this is still open!
! (where the core problem occurs)

The two examples would give us:

Syntax |n|t|a||ty theorem Syntax by |n|t|a||ty universe U
(raw) |’ “I(as QIIT) (standard model)

Why we really want both examples (syntax and standard model)

Shulman 2014:
Is the n*® universe a model of HoTT with (n-1) universes?

l.e.: Can we define the syntax and interpret it in U,,?

However: Even the simplest® version of this is still open!
! (where the core problem occurs)

Work by: Escardé-Xu, K., Bucholtz, Lumsdaine, Kaposi-Kovacs, Altenkirch, ...

The two examples would give us:

Syntax |n|t|a||ty theorem Syntax by |n|t|a||ty universe U
(raw) |’ “I(as QIIT) (standard model)

Why we really want both examples (syntax and standard model)

Shulman 2014:
Is the n*® universe a model of HoTT with (n-1) universes?

e.: Can we define the syntax and interpret it in U,,?

Work by: Escardé-Xu, K., Bucholtz, Lumsdaine, Kaposi-Kovacs, Altenkirch, ...

However: Even the simplest® version of this i |s still openI

! (where the core problem occurs) 8{;1/7L A}O’L
The two examples would give us: ,'U #h U

Yy

Syntax Iinitiality theorem\ Syntax by universe U
(raw) |’ “I(as QIIT)

(standard model)

o
o 4“’711%

Back to the definition from slide 4:

Con Type Tm : (I': Con) — Ty — Type
Sub : Con — Con — Type [1': TmAA s (0:SubTA) = TmT (Afo]")
o : Sub®A — SubI'©® — SubT" A + t T
- - [id] c tlid] =t over [id]
assoc : (cod)ov=o0c0(dov)
RF i tlood]t = t[o]t[6]t over [o]T
id . SubT'T 2
s .
idly : idoo=o J/ fiy) /‘,0[> _: (I':Con) = Ty — Con
idry : ocoid=o) ,,{ “ P : Sub(I'> A)T
. . Con a ¢ Tm (Do A) (Alp]T)
€ . SubTe . ¢ (0:SubT'A) - TmT (A[o]') = SubT (A > A)
o1 : V(o :SubTe). o =c¢ >B1 : po(o,t) =0
Ty . Con — Type >P2 o qlo, 8]t = tt over [<>]T and b1
> : (p,q)=id
(1" TyA 5 SwbTA - TyT (@) . .
, 0 : (oyt)ov = (cov,tv])t over [¢
idT o AfidT =4 i fe]
]l Alood] = Alo]"[8]"

Goal: Make this coherent! E.g. we really need idliqy = idrq.
Brutal method: Require h-sets everywhere (too restrictive).
Proposed method: Use higher categories = (00, 1)-CwF's.

As discussed above: A 1-CwF consists of

a category C of contexts and substitutions

a presheaf of types
another functor for terms

a context extension operation.

We need to oo-categorify everything.

As discussed above: A 1-CwF consists of
e a category C of contexts and substitutions
e a presheaf of types
e another functor for terms
e a context extension operation.

We need to oo-categorify everything. ,/

Problem: Unknown how to define (“half-synthetic”) co-categories in type theory.

As discussed above: A 1-CwF consists of
e a category C of contexts and substitutions
e a presheaf of types
e another functor for terms
e a context extension operation.

We need to oo-categorify everything.

Problem: Unknown how to define (“half-synthetic”) co-categories in type theory.
Therefore: Work in extension of type theory, but which?

e 2LTT (two-level type theory, successor of Voevodsky's HTS)

e Riehl-Shulman’'17 type theory

o Allioux—Finster—-Sozeau'21 extension
o .. .7

As discussed above: A 1-CwF consists of
e a category C of contexts and substitutions
e a presheaf of types
e another functor for terms
e a context extension operation.

We need to oo-categorify everything.

Problem: Unknown how to define (“half-synthetic”) co-categories in type theory.

Therefore: Work in extension of type theory, but which?

e 2LTT (two-level type theory, successor of Voevodsky's HTS)
e Riehl-Shulman’17 type theory

o Allioux—Finster—-Sozeau'21 extension

| e ?

As discussed above: A 1-CwF consists of
e a category C of contexts and substitutions
e a presheaf of types
e another functor for terms
e a context extension operation.

We need to oo-categorify everything.

Problem: Unknown how to define (“half-synthetic”) co-categories in type theory.

Therefore: Work in extension of type theory, but which?

e 2LTT (two-level type theory, successor of Voevodsky's HTS)

e Riehl-Shulman’17 type theory

o Allioux—Finster—-Sozeau'21 extension

| e ?

What is an oco-category? Model used: Rezk's Segal spaces.

Strategy:
(1) Start with a semisimplicial type (“basic data”)
(2) Add Segal condition (= oo-semicategory)

(3) Add identities (= oco-category)

What is an oco-category? Model used: Rezk's Segal spaces.

Strategy:
= (1) Start with a semisimplicial type ("basic data”)
(2) Add Segal condition (= oo-semicategory)

(3) Add identities (= oco-category)

What is an oco-category? Model used: Rezk's Segal spaces.

Strategy:
(1) Start with a semisimplicial type (“basic data”)
“=>(2) Add Segal condition (= co-semicategory)

(3) Add identities (= oco-category)

What is an oco-category? Model used: Rezk's Segal spaces.

Strategy:
(1) Start with a semisimplicial type (“basic data”)
(2) Add Segal condition (= oo-semicategory)

:_)(3) Add identities (= oo-category)

What is an oco-category? Model used: Rezk's Segal spaces.

Strategy:

(1) Start with a semisimplicial type (“basic data”)

(2) Add Segal condition (= oco-semicategory) F"%&;/Ma/
(3) Add identities (= oco-category) f/7@/,gj/

(1) Recall:[semisimplicial type up to dimension 2|is tuple (A, A1, Ay) where

Ap : Type
Al : AO — AO — Type
Ay T{zyz: Ao}t (Arzy) = (A1yz) — (A 2) — Type

(1) Recall: semisimplicial type up to dimension 2 is tuple (A, A1, Ay) where

©)

AO —>A0 —>Type
Ay T{zyz: Ao}t (Arzy) = (A1yz) — (A 2) — Type

X.
.2

(1) Recall: semisimplicial type up to dimension 2 is tuple (A, A1, Ay) where

- Type
@Z AO — AO — Type
Ay T{zyz: Ao}t (Arzy) = (A1yz) — (A 2) — Type

=

(1) Recall: semisimplicial type up to dimension 2 is tuple (A, A1, Ay) where

- Type
@Z AO — AO — Type
Ay T{zyz: Ao}t (Arzy) = (A1yz) — (A z) — Type

="

(2) Adding the Segal condition

Semicategory (beginning) Semisimplicial type (beginning)
Ob : Type Ag : Type
Hom : Ob — Ob — Type Ay Ag — Ay — Type
~ o :{zyz:0b} - (Homyz) Ay {zxyz: Ao} = (A1y2)
— (Homzy) — (Homx z) — (A zy) — (A xz) — Type

Lemma: For X : Type, we have X ~ (P : X — Type).
isContr(X(z : X).Px).

(2) Adding the Segal condition

Semicategory (beginning) Semisimplicial type (beginning)
Ob : Type <) Ag : Type
Hom : Ob — Ob — Type Ay Ag — Ay — Type
~ o :{zyz:0b} - (Homyz) Ay {zxyz: Ao} = (A1y2)
— (Homzy) — (Homx z) — (A zy) — (A xz) — Type

Lemma: For X : Type, we have X ~ (P : X — Type).
isContr(X(z : X).Px).

(2) Adding the Segal condition

Semicategory (beginning) Semisimplicial type (beginning)
Ob : Type <) Ag : Type
Hom : Ob — Ob — Type &)Al Ay — Ay — Type
~ o :{zyz:0b} - (Homyz) Ay {zxyz: Ao} = (A1y2)
— (Homzy) — (Homx z) — (A zy) — (A xz) — Type

Lemma: For X : Type, we have X ~ (P : X — Type).
isContr(X(z : X).Px).

(2) Adding the Segal condition

Semicategory (beginning) Semisimplicial type (beginning)
Ob : Type <) Ag : Type
Hom : Ob — Ob — Type &)A Ay — Ay — Type
_:{zxyz:0b} = (Ho HAQ {ryz: AO}—>(A1?JZ) —
77— (Hom x y) —>l(omxz) (A1$y)—>'(A1$Z)—>TYPe’
,nvaw’r/n Paf — T
Tixyz: oL), .

Lemma: For X : Type, we have X ~ (P : X — Type).
isContr(X(z : X).Px).

(2) Adding the Segal condition

Semicategory (beginning) Semisimplicial type (beginning)
Ob : Type <) Ag : Type
Hom : Ob — Ob — Type &)Al Ay — Ay — Type
_:{zyz:0b} — (Ho /rle_Z—)HAQ Hryz: Ao} = (Aryz)
— (Hom z y) —>r;H mxzz\) — (A zy) —>’ (Alacz) — Typ\el

_ = e~ 7

SIS Aj’é 17))[{’/1,7)

> sl (Zh: Arx)))

(3) Add identities/degeneracies

In previous work: Completeness (Lurie/Harpaz/Capriotti) corresponding to
univalent identities (cf. Capriotti-Kraus 2018).

Here: We don't want built-in univalence. Instead:

Def: Aline f: Ay xx is a good identity if it is an idempotent equivalence.

Def: f is idempotentif Ay f f f. Def: f is an equivalence if pre- and
post-composition with f is.

(3) Add identities/degeneracies

In previous work: Completeness (Lurie/Harpaz/Capriotti) corresponding to

univalent identities (cf. Capriotti-Kraus 2018).
&Z\S/y/a/,l(5] /”74/’!&) }7»7/ ””/'Vqéy/.;—

Here|l We don't want built-in univalencel Instead:

Def: Aline f: Ay xx is a good identity if it is an idempotent equivalence.

Def: f is idempotentif Ay f f f. Def: f is an equivalence if pre- and
post-composition with f is.

(3) Add identities/degeneracies

In previous work: Completeness (Lurie/Harpaz/Capriotti) corresponding to
univalent identities (cf. Capriotti-Kraus 2018).

Here: We don't want built-in univalence. Instead:

Def: Aline f: Ay xx is a good identity if it is an idempotent equivalence.

Def: f is idempotentif Ay f f f. Def: f is an equivalence if pre- and
post-composition with f is.

m /\././). ‘e) %
,@\/ //7 e :—‘l ?,;.OJ
C- oy &
&
/F

Definition: A semicategory (higher semicategory, semi-Segal type)
has a good identity structure if every object (point)
is equipped with an idempotent equivalence.

Theorem: “Having a good identity structure’:
— is a propositional property; and
— generates all degeneracies; and
— is interderivable with a “standard” identity structure
(id with idl and idr).

Definition: An oo-category is a semisimplicial type
which satisfies the Segal condition and has a good
identity structure.

(Extending oo-categories to co-CwF's is not done in this talk.)

Definition: A semicategory (higher semicategory, semi-Segal type)
has a good identity structure if every object (point)
is equipped with an idempotent equivalence.

Theorem: “Having a good identity structure’:
— is a propositional property; and
— generates all degeneracies; and
— is interderivable with a “standard” identity structure
(id with idl and idr).

Definition: An oo-category is a semisimplicial type
which satisfies the Segal condition and has a good
identity structure.

(Extending oo-categories to co-CwF's is not done in this talk.)

Definition: A semicategory (higher semicategory, semi-Segal type)
has a good identity structure if every object (point)
is equipped with an idempotent equivalence.

Theorem: “Having a good identity structure’:
— is a propositional property; and
— generates all degeneracies; and
— is interderivable with a “standard” identity structure
(id with idl and idr).

Definition: An oo-category is a semisimplicial type
which satisfies the Segal condition and has a good
identity structure.

(Extending oo-categories to co-CwF's is not done in this talk.)

Crovz>

Done:

e Every h-set-based 1-CwF is an co-CwF
= the syntax is an co-CwF

e Every “wild" 1-CwF, where equations hold strictly, is an co-CwF
= standard model (universe) is an oo-CwF
e Other constructions, e.g. slice co-CwF (“working with assumptions’)

Main unsolved problem:

e |s the syntax initial?

And: How about other settings (not 2LTT)?

Done:
e Every h-set-based 1-CwF is an co-CwF
= the syntax is an oco-CwF

e Every “wild" 1-CwF, where equations hold strictly, is an co-CwF

= standard model (universe) is an co-CwF

e Other constructions, e.g. slice co-CwF (“working with assumptions’)

Main unsolved problem:

e |s the syntax initial?

And: How about other settings (not 2LTT)?

Done:
e Every h-set-based 1-CwF is an co-CwF
= the syntax is an co-CwF
e Every “wild" 1-CwF, where equations hold strictly, is an co-CwF

= standard model (universe) is an co-CwF

e Other constructions, e.g. slice co-CwF (“working with assumptions’)

Main unsolved problem:

e |s the syntax initial?

And: How about other settings (not 2LTT)?

Done:
e Every h-set-based 1-CwF is an co-CwF
= the syntax is an co-CwF
e Every “wild" 1-CwF, where equations hold strictly, is an co-CwF
= standard model (universe) is an oo-CwF
e Other constructions, e.g. slice co-CwF (“working with assumptions’)

Main unsolved problem:

e |s the syntax initial?

And: How about other settings (not 2LTT)?

