Type Theory with Weak J

Thorsten Altenkirch Paolo Capriotti Thierry Coquand Nils Anders Danielsson Simon Huber Nicolai Kraus

TYPES, Budapest, 1 June 2017
Report of a discussion between:

Thorsten Altenkirch Paolo Capriotti Thierry Coquand
Nils Anders Danielsson Simon Huber Nicolai Kraus

TYPES, Budapest, 1 June 2017
Equalities

$$(\lambda x.x)y \equiv y$$

(a judgment)

$n + 4 = 4 + n$

(a type)

Which equalities do we want to be judgmental/definitional?

Consequences?

Can we prove more stuff if more equalities are judgmental?

E.g.: If we have equality reflection

$x = y \Rightarrow x \equiv y$ ("extensional MLTT"), we can:

/uni25B8

prove function extensionality.
Equalities

\[(\lambda x.x)y \equiv y\] \[n + 4 = 4 + n\]

(a judgment) (a type)

Which equalities do we want to be judgmental/definitional? Consequences?
Equalities

\[(\lambda x.x)y \equiv y\] \hspace{1cm} n + 4 = 4 + n

(a judgment) \hspace{1cm} (a type)

Which equalities do we want to be judgmental/definitional? Consequences?

Can we prove more stuff if more equalities are judgmental?
Equalities

\[(\lambda x . x)y \equiv y\] \hspace{1cm} n + 4 = 4 + n

(a judgment) \hspace{1cm} (a type)

Which equalities do we want to be judgmental/definitional? Consequences?

Can we prove more stuff if more equalities are judgmental?

E.g.: If we have equality reflection \(x \equiv y\) ("extensional MLTT"), we can:

- derive UIP/K: \((x : A) \to (p : x = x) \to (p = \text{refl})\),
Equalities

\[(\lambda x.x)y \equiv y\] \hspace{1cm} n + 4 = 4 + n

(a judgment) \hspace{1cm} (a type)

Which equalities do we want to be judgmental/definitional? Consequences?

Can we prove more stuff if more equalities are judgmental?

E.g.: If we have equality reflection \(x = y\) \(\quad (\text{"extensional MLTT"})\), we can:

\[
\begin{align*}
\text{derive UIP/K: } & (x : A) \rightarrow (p : x = x) \rightarrow (p = \text{refl}), \text{ because} \\
&(x, y : A) \rightarrow (p : x = y) \rightarrow p = \text{refl} \quad \text{does now type-check.}
\end{align*}
\]
Equalities

\[(\lambda x.x)y \equiv y\] \[n + 4 = 4 + n\]
(a judgment) (a type)

Which equalities do we want to be judgmental/definitional?
Consequences?
Can we prove more stuff if more equalities are judgmental?

E.g.: If we have equality reflection \(x = y\) \(\frac{x = y}{x \equiv y}\) (“extensional MLTT”), we can:

- derive UIP/K: \((x : A) \rightarrow (p : x = x) \rightarrow (p = \text{refl})\), because \((x, y : A) \rightarrow (p : x = y) \rightarrow p = \text{refl}\) does now type-check.
- prove function extensionality.
Conservativity

If:

- A is a type in intensional MLTT with funext and UIP
- A is inhabited in extensional MLTT

Then:

- A is inhabited in intensional MLTT with funext and UIP
Conservativity

If:

- A is a type in intensional MLTT with funext and UIP
- A is inhabited in extensional MLTT

Then:

- A is inhabited in intensional MLTT with funext and UIP

Our setting: Intensional MLTT with funext (+ univalence + ...). What happens if we remove/add judgmental equalities?
Write I_A for $\sum_{x,y:A} x = y$.

The type of the equality eliminator is:

$$J : (A : \mathcal{U}) \rightarrow (P : I_A \rightarrow \mathcal{U}) \rightarrow (d : (x : A) \rightarrow P(x, x, \text{refl})) \rightarrow (q : I_A) \rightarrow P(q).$$
Write I_A for $\Sigma_{x,y:A} x = y$.

The type of the equality eliminator is:

$$J : (A : \mathcal{U}) \to (P : I_A \to \mathcal{U}) \to (d : (x : A) \to P(x, x, \text{refl})) \to (q : I_A) \to P(q).$$

The usual judgmental β-rule says $J^{A,P,d}(x, x, \text{refl}) \equiv d(x)$.
Weak J

Write I_A for $\sum_{x,y:A} x = y$.
The type of the equality eliminator is:

$$J : (A : \mathcal{U}) \to (P : I_A \to \mathcal{U}) \to (d : (x : A) \to P(x, x, \text{refl})) \to (q : I_A) \to P(q).$$

The usual judgmental β-rule says $J^{A,P,d}(x, x, \text{refl}) \equiv d(x)$.
What happens if we replace it by

$$J_{\beta} : (A : \mathcal{U}) \to (P : I_A \to \mathcal{U}) \to (d : (x : A) \to P(x, x, \text{refl})) \to (x : A) \to J^{A,P,d}(x, x, \text{refl}) = d(x)$$

(“weak J”) - do we lack coherence?
Example: subst

Recall: Given

\[A : \mathcal{U} \quad P : A \to \mathcal{U} \quad x, y : A \quad p : x = y \]

we have

\[\text{subst}^{A,P,p} : P(x) \to P(y). \]
Example: subst

Recall: Given

\[A : \mathcal{U} \quad P : A \to \mathcal{U} \quad x, y : A \quad p : x = y \]

we have

\[\text{subst}^{A, P, p} : P(x) \to P(y). \]

Usually, we have \[\text{subst}^{A, P, \text{refl}}(q) \equiv q. \]
Example: subst

Recall: Given

\[A : \mathcal{U} \quad P : A \to \mathcal{U} \quad x, y : A \quad p : x = y \]

we have

\[\text{subst}^{A,P,p} : P(x) \to P(y). \]

Usually, we have \(\text{subst}^{A,P,\text{refl}}(q) \equiv q \).

From “weak J”, we can only derive

\[\text{subst}_{\beta}^{A,P} : (q : P(x)) \to \text{subst}^{A,P,\text{refl}}(q) = q. \]
Example: subst

$$\text{ap}_{\text{subst}^{A,P,\text{refl}}}(\text{subst}_{\beta}^{A,P}(q)) \quad \text{subst}_{\beta}^{A,P}(\text{subst}^{A,P,\text{refl}}(q))$$

$$\text{subst}^{A,P,\text{refl}}(q)$$
Example: subst

\[
\text{subst}^{A, P, \text{refl}} \left(\text{subst}^{A, P, \text{refl}}(q) \right)
\]

\[
\text{ap}_{\text{subst}^{A, P, \text{refl}}} \left(\text{subst}^{A, P}_{\beta}(q) \right) = \text{subst}^{A, P}_{\beta} \left(\text{subst}^{A, P, \text{refl}}(q) \right)
\]

\[
\left(\text{subst}^{A, P, \text{refl}}, \text{subst}^{A, P}_{\beta} \right) : \Sigma f : P(x) \to P(x) \left((q : P(x)) \to f(q) = q \right)
\]
Example: subst

\[\text{subst}^{A,P,\text{refl}} \left(\text{subst}^{A,P,\text{refl}}(q) \right) \]

\[\text{ap}_{\text{subst}^{A,P,\text{refl}}} \left(\text{subst}_{\beta}^{A,P}(q) \right) \]

\[\text{subst}_{\beta}^{A,P} \left(\text{subst}^{A,P,\text{refl}}(q) \right) \]

\[\text{subst}^{A,P,\text{refl}}(q) \]

\[\left(\text{subst}^{A,P,\text{refl}}, \text{subst}_{\beta}^{A,P} \right) : \Sigma f:P(x)\rightarrow P(x) ((q : P(x)) \rightarrow f(q) = q) \]

And: \[\left(\text{subst}^{A,P,\text{refl}}, \text{subst}_{\beta}^{A,P} \right) = (\text{id}_{P(x)}, \lambda q.\text{refl}) \]
Example: subst

$$
\begin{array}{c}
\text{id (id}(q)\text{))}
\end{array}
$$

$$
\begin{array}{c}
\text{ap}_{\text{id}}\text{(refl)}
\end{array}
$$

$$
\begin{array}{c}
\text{refl}
\end{array}
$$

$$
\begin{array}{c}
\text{id}(q)
\end{array}
$$

$$(\text{subst}^{A,P,\text{refl}}, \text{subst}^{A,P}) : \Sigma f : P(x) \to P(x) \left((q : P(x)) \to f(q) = q \right)$$

And: $$(\text{subst}^{A,P,\text{refl}}, \text{subst}^{A,P}) = (\text{id}_{P(x)}, \lambda q.\text{refl})$$
Weak J revisited

Write I_A for $\Sigma_{x,y:A} x = y$.

The types of J and its (weak) β-rule are:

\[
\begin{align*}
J : & \quad (A : U) \to (P : I_A \to U) \to (d : (x : A) \to P(x, x, \text{refl})) \\
& \to (q : I_A) \to P(q)
\end{align*}
\]

\[
\begin{align*}
J_\beta : & \quad (A : U) \to (P : I_A \to U) \to (d : (x : A) \to P(x, x, \text{refl})) \\
& \to (x : A) \to J^{A,P,d}(x, x, \text{refl}) = d(x)
\end{align*}
\]
Weak J revisited

Write I_A for $\Sigma_{x,y:A} x = y$.

The types of J and its (weak) β-rule are:

\[
J : \quad (A : \mathcal{U}) \rightarrow (P : I_A \rightarrow \mathcal{U}) \rightarrow (d : (x : A) \rightarrow P(x, x, \text{refl})) \\
\rightarrow (q : I_A) \rightarrow P(q)
\]

\[
J_\beta : \quad (A : \mathcal{U}) \rightarrow (P : I_A \rightarrow \mathcal{U}) \rightarrow (d : (x : A) \rightarrow P(x, x, \text{refl})) \\
\rightarrow (x : A) \rightarrow J^{A,P,d}(x, x, \text{refl}) = d(x)
\]

$A \rightarrow I_A, \quad x \mapsto (x, x, \text{refl})$ is an equivalence.
Weak J revisited

Write I_A for $\sum_{x,y:A} x = y$.

The types of J and its (weak) β-rule are:

\[
J : (A : \mathcal{U}) \to (P : I_A \to \mathcal{U}) \to (d : (x : A) \to P(x, x, \text{refl})) \\
\to (x : A) \to P(x, x, \text{refl})
\]

\[
J_\beta : (A : \mathcal{U}) \to (P : I_A \to \mathcal{U}) \to (d : (x : A) \to P(x, x, \text{refl})) \\
\to (x : A) \to J^{A,P,d}(x) = d(x)
\]

$A \to I_A, \ x \mapsto (x, x, \text{refl})$ is an equivalence.
Weak J revisited

Write I_A for $\sum_{x,y:A} x = y$.

The types of J and its (weak) β-rule are:

\[
J : \quad (A : U) \to (P : I_A \to U) \to (d : (x : A) \to P(x, x, \text{refl})) \to (x : A) \to P(x, x, \text{refl})
\]

\[
J_\beta : \quad (A : U) \to (P : I_A \to U) \to (d : (x : A) \to P(x, x, \text{refl})) \to (x : A) \to J^{A,P,d}(x) = d(x)
\]

$A \to I_A, \quad x \mapsto (x, x, \text{refl})$ is an equivalence.

Conjecture: “Normal” MLTT is conservative over MLTT with weak J.

Thank you!