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Alice 7242 days
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Brouwer ordinal trees in constructive type theory

Inductive type B of Brouwer trees:  data B where
zero: BB
succ: B — B
limit: (N — B) = B

Then: Define w := limit(0,1,2,3,...)
w- 2= limit(w,w+ L,w+2,...)
and so on (addition, multiplication, exponentiation are standard).
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Then: Define w := limit(0,1,2,3,...)
w- 2= limit(w,w+ L,w+2,...)
and so on (addition, multiplication, exponentiation are standard).

One problem (for our application): limit(0,1,2,3,...) # limit(1,2,3,...)

Our approach: induction-induction and path constructors, ensuring:
» Limits can only be taken of strictly increasing sequences;

» Bisimilar sequences have equal limits.



In cubical Agda:

data Brw where

zero : Brw

succ : Brw - Brw note: * <y

limit : (f : N - Brw) - {fr : increasing f} - Brw

bisim : Vv f {f1} g {gt} - means succx <y
f = g -

limit £ {f+} = limit g {gr}
trunc : isSet Brw

data =< where

<-zero 1V {x} - zero = x

=-trans Vi{xyz} - x=sy-y=2z-Xxz=z2

=-succ-mono : ¥V {X y} - X =y - sSucc X < succ y

<-cocone V¥V {x} f {fr k} - (x = f k) - (x = limit f {f1})
=-limiting V f{ft x} - ((k:N)-TKk=x) - limit f {fr} = x
=-trunc ¥V {x y} - isProp (x = vy)

Everything that one can “reasonably expect” works: < is wellfounded, < is anti-
symmetric, limits are actually limits, arithmetic operations work, and so on.
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data B where
zero : B
succ: B — B

limit : (N 2% B) — B

Decidability properties

P is decidable if we can prove P& —P.

If 2 is a Brouwer tree ordinal, is it decidable whether . ..

1. x is finite?

Sure: zero is finite; succy is finite iff y is; limits are never finite.
2. x =177

Sure: No for zero and limits; for succy, check whether y = 16.
3. x> 427

Sure: No for zero, yes for limits; for succy, check whether y > 41.

4. x> w?
Can decide it for zero and succ, but:  limit(zg, x1, 2, ...) > w?



When is limit(xg, x1,29,...) > w 7

» For any i, we can check whether z; is finite.
» As soon as we discover an infinite x;, the question is decided positively.

» Only if all z; are finite, the answer is negative.

= Semidecidable.



When is limit(xg, x1,29,...) > w 7

» For any i, we can check whether z; is finite.
» As soon as we discover an infinite x;, the question is decided positively.

» Only if all z; are finite, the answer is negative.

= Semidecidable.

Definition (Bauer 2006): P is semidecidable if
(s : N — Bool). P <» Jk.s = true

(Note: 3(z : A).B(x) means || X(z: A).B(x)].)

Fact: For any x, the question = > w is semidecidable.



The other direction

Given s : N — Bool, we can construct an increasing sequence f by:

f0:= zero

sory-{

(fn)+w ifnis [minimal] such that s, = true

succ(fn) else.

Then: (limit f > w) <> (Fk.s; = true).



Semidecidability via ordinals

Via these translations: For any proposition P,

Ay :B).P+ (y >w) — (s : N — Bool). P <» Jk.s = true

“P decidable in w steps” (77) “P semidecidable”



Semidecidability via ordinals

Via these translations: For any proposition P,

Ay :B).P+ (y >w) — (s : N — Bool). P <» Jk.s = true

“P decidable in w steps” (77) “P semidecidable”

What if we swap w for another ordinal a?

Ay :B).P+ (y>a) "decidable in o steps”

(ory>a,y=a,any Qy), ...)



Fewer than w steps

Let n be a natural number. Then:

Ay :B).P <+ (y >n) — Py-P
" P decidable in n steps” " P decidable”



More than w steps — an example

Twin prime conjecture (TPC):

There are arbitrarily large numbers p such that p and p + 2 are both prime.

It's clearly semidecidable whether there is a twin pair > 10%%0%%%° byt TPC
doesn’t seem to be semidecidable.



More than w steps — an example

Twin prime conjecture (TPC):

There are arbitrarily large numbers p such that p and p + 2 are both prime.

It's clearly semidecidable whether there is a twin pair > 10%%0%%%° byt TPC
doesn’t seem to be semidecidable.

However, one can show:

J(y : B).TPC < (y = w?)

“TPC is decidable in w? steps.”
(Note: = can be replaced by > or >.)
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At the same time, f never exceeds w?.
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f0:= zero

fln+1) = (fn)+w ifnandn+ 2 are prime
(fn)+1 else

Claim: TPC <« limitf =w? [+ succ(limit f) > w?

Thanks for your attention!
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