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Typed A\ Calculus

Curry-Howard

Natural Deduction = Type Theory
A—>B A ['Ff.A=>B [Ttu:A
B F'-fu:B
B x:A-t: B

A— B EXxt:A—=B
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Dependently Typed A Calculus

Types may depend on terms:
Vec A n

are Lists over A with length n.
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Dependently Typed A Calculus

Curry-Howard

Natural Deduction = Type Theory special case
JxeaB Y (x:A).B Ax B
VyenB MN(x:A).B A— B

Usage, e.g. Agda & Epigram:
proof assistants, formal verification, proof-carrying code
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Problems...

@ Typechecking requires Computation.
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Problems...

@ Typechecking requires Computation.

@ Equality is no longer decidable in general.
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Problems...

@ Typechecking requires Computation.
@ Equality is no longer decidable in general.

@ We want decidable typechecking.
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...and Answers

Two kinds of Equality!
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The J Eliminatol

...and Answers

Two kinds of Equality!

“Real" decidable equality such as (Aa.b)x =g b[x/a] I
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..and Answers

—
—

Two kinds of Equality!

“Real” decidable equality such as (Aa.b)x =g b[x/a]

Equality needing a proof
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Propositional Equality

M= x y: A
IE ldaxy : type

Form

rex:A .
I F refl, : Idaxx M0
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Propositional Equality

[ HA: type

[x,y: A p:ldaxyEM(xyp): type

CrAlm: M(r, r, refl,)

[Fa, b: A

[Fq:ldaab
r-JMmabaq:M(ab,q)

Elim (J)

J/\/Imaa“réf/a:ma Comp
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Subst from J

@ P:A— Setand a, b: A.
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Subst from J

@ P:A— Setand a, b: A.
@ g:ldaab
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Subst from J

@ P:A— Setand a, b: A.

@ g:ldaab
ep:Pa
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Subst from J

@ P:A— Setand a,b: A

@ g:ldaab

ep:Pa

@ Can we get something of type P b?
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Subst from J

@ P:A— Setand a,b: A

@ g:ldaab

ep:Pa

@ Can we get something of type P b?

le. is(P:A— Set) — (a,b:A) = ldyab— Pa— Pb
inhabited?
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Subst from J

@ P:A— Setand a,b: A

@ g:ldaab

ep:Pa

@ Can we get something of type P b?

le. is(P:A— Set) — (a,b:A) = ldyab— Pa— Pb
inhabited?

Sure! Using J with
M=Xxyp.Px— Py

m=MX\X.Xx

Call it subst.
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Uniqueness of Identity Proofs

How many inhabitants can /ds a b have in general?
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Uniqueness of Identity Proofs

How many inhabitants can Id, a b have in general?

For some time, it was assumed that there is at most one (UIP),
I.e. given p,q : Idaab, the type Idp q is inhabited.
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Uniqueness of Identity Proofs

How many inhabitants can Id, a b have in general?

For some time, it was assumed that there is at most one (UIP),
I.e. given p,q : Idaab, the type Idp q is inhabited.

Hofmann-Streicher groupoid model: not derivable from J.
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Uniqueness of Identity Proofs - Refuted

» O

/\b
\_/)

“CoDm & «C

H

a,b,d,e: A c,f: B
s:ldaaa p.q:ldyab u,v:ldsbe
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UIP Is weird anyway

BOOL = {true, false}
iIsomorphisms:

id: BOOL — BOOL
- : BOOL — BOOL
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UIP Is weird anyway

BOOL = {true, false}
Isomorphisms:

id: BOOL — BOOL
- : BOOL — BOOL

So, identity equals negation?!
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Extensionality

Given:
e f:A—=B
eg:A—B
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Extensionality

Extensionality

Given:
o f:A—=B
eg:A—B
o p:M(x:A).ldg (fx) (gx)
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Extensionality

Extensionality

Given:
o f:A—=B
eg:A—B
o p:M(x:A).ldg (fx) (gx)

Can we construct something of type lda_,5 f g (Leibniz)? No!
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Extensionality

Idea: Adding extensionality as additional axiom.
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Extensionality

Idea: Adding extensionality as additional axiom.

But then, assume p is a (nontrivial) equality proof using this
axiom.
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Extensionality

Idea: Adding extensionality as additional axiom.

But then, assume p is a (nontrivial) equality proof using this
axiom.

Consequence:

subst (A\h — N) p0
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Extensionality

Idea: Adding extensionality as additional axiom.

But then, assume p is a (nontrivial) equality proof using this
axiom.

Consequence:
subst (A\h — N) p0

Non-canonical natural numbers!
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Univalence and weak omega groupoids

Vladimir Voevodsky
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Univalence and weak omega groupoids

Voevodsky's suggestion

...because it is weird and has undesirable consequences! I
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Voevodsky's suggestion

...because it is weird and has undesirable consequences! I

... because of the same reason!
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ind weak omega groupoids

Voevodsky's suggestion

...because it is weird and has undesirable consequences!

... because of the same reason!

... because it is better - as we will see in a moment!
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Univalence and weak omega groupoids

Lumsdaine’s and v.d.Berg's result

] for example:
@ a.=b:=x
o p:=p =refl,
p P’
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Univalence and weak omega groupoids

Lumsdaine’s and v.d.Berg's result

for example:

@ a =b=x

H
m @ p:=p =refl,
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Univalence and weak omega groupoids

Lumsdaine’s and v.d.Berg's result

for example:

@ a =b=x

H
m o p:=p =refl,
W o H=H = reﬂreﬂx

(17/24) COMPUTING 2011 — 2011-10-21



Univalence and weak omega groupoids

Lumsdaine’s and v.d.Berg's result

for example:

@ a =b=x

I
w o p:=p =refl,

p p
W o H=H = reﬂreﬂx
o refl
b refl e,
Q.

Weak w groupoid
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Homotopy Theoretic Model of Intensional Type Theor

A very well-known structure. . .

...in Topology!

(source: Wikipedia)
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Homotopy Theoretic Model of Intensional Type Theory

A disc

a (nondepen-
dent!) type -
we call it X

a topological
space - we call it
X
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two terms two points
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Homotopy Th of In al Type Theor

A disc

a path
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Homotopy Theoretic Model of Intensional Type Theory

A disc

abeX
a,b: X p:[0,1] =X
p:ldab p(0) =a

p(l)=>b
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Homotopy Theoretic Model of Intensional Type Theory

A disc

p~t:[0,1] = X

p~t:ldba
pi(t) =p(l—t)
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Homotopy Theoretic Model of Intensional Type Theory

A disc

p:.a=b
q:ldbc
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abeX
p:[0,1] =X
p(0) = a
p(l)=0b
qg:[0,1]—X
q(0) =b
q(l)=c



Homotopy Theoretic Model of Intensional Type Theory

A disc

qgop:
[0,1] = X
X

p(2x),x < 0.5
q(2x — 1), else

gop : ldac
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Homotopy Theoretic Model of Intensional Type Theory

Another set

not
path-connected

Idac not
inhabited
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Homotopy Theoretic Model of Intensional Type Theory

A disc

' 0,1 X
p,p :Ildab p.p[0.1] =
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Homotopy Theoretic Model of Intensional Type Theory

A disc

H:ldpp
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H:[0,1? = X

H(0,) =p
H(L,-)=p
H(t,0) = a
H(t,1)=b



Homotopy Theoretic Model of Intensional Type Theory

A disc

H:[0,1?—= X

H(0,-) =p
H(L,-)=p
H(t,0) = a
H o ldpp' H(t,1) = b

p:[0 1 > X
a:[0,1°—= X

(19/24) COMPUTING 2011 —2011-10-21



Homotopy Theoretic Model of Intensional Type Theory

A ring

H:ldpp
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H:[0,1? = X

H(0,-) =p
H(L,-)=p
H(t,0) = a
H(t,1)=b



Homotopy Theoretic Model of Intensional Type Theory

A disc

H:ldpp
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H:[0,1? = X

H(0,) =p
H(L,-)=p
H(t,0) = a
H(t,1)=b



Homotopy Theoretic Model of Intensional Type Theory

A disc

H : [0,1]2 — X

H'(0,-) =p
H :ldpp H'(1,-)=p
H'(t,0) = a
H(t,1)=b
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Homotopy Theoretic Model of Intensional Type Theory

A disc

K:[0,1P— X

K : IdH H KO, ) =H
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Homotopy Theoretic Model of Intensional Type Theory

Putting it together
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Univalence again

Voevodsky again

The (canonical) mapping from equalities to weak equivalences is a
weak equivalence.
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Univalence again

Voevodsky again

The (canonical) mapping from equalities to weak equivalences is a
weak equivalence.

@ No need for UIP
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Univalence again

Voevodsky again

The (canonical) mapping from equalities to weak equivalences is a
weak equivalence.

@ No need for UIP
@ Extensionality
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Univalence again

Voevodsky again

The (canonical) mapping from equalities to weak equivalences is a
weak equivalence.

@ No need for UIP
@ Extensionality

@ Only canonical members of N
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Univalence again

Voevodsky again

The (canonical) mapping from equalities to weak equivalences is a
weak equivalence.

@ No need for UIP
@ Extensionality
@ Only canonical members of N

@ a “completely natural axiom” so that everything works as in
homotopical intuition
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Summary, Researchers and Acknowledgements

Summary

Hopes:
Homotopic Models:

Univalence:
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Summary, Researchers and Acknowledgements

Summary

Hopes:
Homotopic Models:
@ new results and intuition in both type and homotopy theory

Univalence:
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Summary, Researchers and Acknowledgements

Summary

Hopes:
Homotopic Models:

@ new results and intuition in both type and homotopy theory
e better understanding of the connection between logic and
topology

Univalence:
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Summary, Researchers and Acknowledgements

Summary

Hopes:
Homotopic Models:
@ new results and intuition in both type and homotopy theory
e better understanding of the connection between logic and
topology
Univalence:

e avoiding a couple of problems in a natural way

UlP
Extensionality
Canonicity of natural numbers
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Summary, Researchers and Acknowledgements

Summary

Hopes:
Homotopic Models:
@ new results and intuition in both type and homotopy theory
e better understanding of the connection between logic and
topology
Univalence:

e avoiding a couple of problems in a natural way

UlP
Extensionality
Canonicity of natural numbers

e better foundation than Set Theory for (constructive)
mathematics
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Summary, Researchers and Acknowledgements

Summary

Hopes:
Homotopic Models:
@ new results and intuition in both type and homotopy theory
e better understanding of the connection between logic and
topology
Univalence:

e avoiding a couple of problems in a natural way
UlP
Extensionality
Canonicity of natural numbers
e better foundation than Set Theory for (constructive)
mathematics
e at the same time, natively supported by proof assistants
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Summary, Researchers and Acknowledgements

(Other) People | want to mention

Thorsten Altenkirch
Peter Arndt

Steve Awodey
Thierry Coquand
Nicola Gambino
Richard Garner
Chris Kapulkin
Dan Licata

Mike Shulman
Thomas Streicher
Michael Warren

@ ...and many more
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Summar archers and Acknowledgements

Even more people | want to Thank

You.

(24/24) COMPUTING 2011 — 2011-10-21



	Basics
	The J Eliminator
	UIP
	Extensionality
	Univalence and weak omega groupoids
	Homotopy Theoretic Model of Intensional Type Theory
	Univalence again
	Summary, Researchers and Acknowledgements

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	anm0: 


