Equality in the Dependently Typed Lambda Calculus: An Introduction to Homotopy Type Theory

or: Connecting Topology and Logic with Category Theory

Nicolai Kraus
School of Computer Science
University of Nottingham, UK

21.10.2011
Typed λ Calculus

Natural Deduction

$$\frac{A \to B \quad A}{B}$$

$$\frac{B}{A \to B}$$

Curry-Howard

$$\cong$$

Type Theory

$$\frac{\Gamma \vdash f : A \to B \quad \Gamma \vdash u : A}{\Gamma \vdash f \ u : B}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x. t : A \to B}$$
Dependently Typed λ Calculus

Types may depend on terms:

$$\text{Vec } A \ n$$

are Lists over A with length n.
Dependently Typed λ Calculus

Natural Deduction \[\cong\] Type Theory \[\text{special case}\]

\[\exists_{x \in A} B\] \[\Sigma(x:A).B\] \[A \times B\]

\[\forall_{x \in A} B\] \[\Pi(x:A).B\] \[A \rightarrow B\]

Usage, e.g. Agda & Epigram: proof assistants, formal verification, proof-carrying code
Problems...

- Typechecking requires Computation.
- Equality is no longer decidable in general.
- We want decidable typechecking.
Problems...

- Typechecking requires Computation.
- Equality is no longer decidable in general.
- We want decidable typechecking.
Problems...

- Typechecking requires Computation.
- Equality is no longer decidable in general.
- We want decidable typechecking.
Two kinds of Equality!

<table>
<thead>
<tr>
<th>Definitional Equality</th>
<th>“Real” decidable equality such as $(\lambda a.b)x =_\beta b[x/a]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional Equality</td>
<td>Equality needing a proof</td>
</tr>
</tbody>
</table>
Two kinds of Equality!

Definitional Equality
“Real” decidable equality such as \((\lambda a.b)x =_\beta b[x/a]\)

Propositional Equality
Equality needing a proof
...and Answers

Two kinds of Equality!

Definitional Equality
“Real” decidable equality such as $(\lambda a.b)x \beta b[x/a]$

Propositional Equality
Equality needing a proof
Propositional Equality

\[
\Gamma \vdash x, y : A \\
\Gamma \vdash \text{Id}_A x y : \text{type} \quad \text{Form} \\
\Gamma \vdash x : A \\
\Gamma \vdash \text{refl}_x : \text{Id}_A x x \quad \text{Intro}
\]
Propositional Equality

\[\Gamma \vdash A : \text{type} \]
\[\Gamma, x, y : A, p : \text{Id}_A x y \vdash M(x,y,p) : \text{type} \]
\[\Gamma, r : A \vdash m : M(r, r, \text{refl}_r) \]
\[\Gamma \vdash a, b : A \]
\[\Gamma \vdash q : \text{Id}_A a b \]
\[\Gamma \vdash J M m a b q : M(a,b,q) \]

\[\text{Elim } (J) \]

\[J M m a a \text{ refl}_a = m a \]

\[\text{Comp} \]
Subst from J

- $P : A \rightarrow \text{Set}$ and $a, b : A$.
- $q : \text{Id}_A a b$
- $p : P a$
- Can we get something of type $P b$?

I.e. is $(P : A \rightarrow \text{Set}) \rightarrow (a, b : A) \rightarrow \text{Id}_A a b \rightarrow P a \rightarrow P b$ inhabited?

Sure! Using J with

$$M = \lambda x y p . P x \rightarrow P y$$

$$m = \lambda x . x$$

Call it subst.
Subst from J

- \(P : A \to Set \) and \(a, b : A \).
- \(q : \text{Id}_A a \ b \)
- \(p : P \ a \)
- Can we get something of type \(P \ b \)?

I.e. is \((P : A \to Set) \to (a, b : A) \to \text{Id}_A a \ b \to P \ a \to P \ b\) inhabited?

Sure! Using J with

\[M = \lambda x \ y \ p . \ P x \to P y \]

\[m = \lambda x . x \]

Call it \(\text{subst} \).
Subst from J

- $P : A \to Set$ and $a, b : A$.
- $q : \text{Id}_A a b$
- $p : P a$
- Can we get something of type $P b$?

I.e. is $(P : A \to Set) \to (a, b : A) \to \text{Id}_A a b \to P a \to P b$ inhabited?

Sure! Using J with

$$M = \lambda x y p. \, P x \to P y$$

$$m = \lambda x. x$$

Call it subst.
Subst from J

- \(P : A \to Set \) and \(a, b : A \).
- \(q : \text{Id}_A a b \)
- \(p : P a \)
- Can we get something of type \(P b \)?

I.e. is \((P : A \to Set) \to (a, b : A) \to \text{Id}_A a b \to P a \to P b \) inhabited?

Sure! Using \(J \) with

\[M = \lambda x y p . P x \to P y \]

\[m = \lambda x . x \]

Call it \(\text{subst} \).
Subst from J

- \(P : A \rightarrow \text{Set} \) and \(a, b : A \).
- \(q : \text{Id}_A \ a \ b \)
- \(p : P \ a \)
- Can we get something of type \(P \ b \)?

I.e. is \((P : A \rightarrow \text{Set}) \rightarrow (a, b : A) \rightarrow \text{Id}_A \ a \ b \rightarrow P \ a \rightarrow P \ b\) inhabited?

Sure! Using \(J \) with

\[
M = \lambda x. y. p. \ P x \rightarrow P y
\]
\[
m = \lambda x. x
\]
Call it \(\text{subst} \).
Subst from J

- $P : A \rightarrow \text{Set}$ and $a, b : A$.
- $q : \text{Id}_A a b$
- $p : P a$
- Can we get something of type $P b$?

I.e. is $(P : A \rightarrow \text{Set}) \rightarrow (a, b : A) \rightarrow \text{Id}_A a b \rightarrow P a \rightarrow P b$ inhabited?

Sure! Using J with

$$M = \lambda x y p . P x \rightarrow P y$$

$$m = \lambda x . x$$

Call it subst.

(9/24) COMPUTING 2011 – 2011-10-21
How many inhabitants can $\text{Id}_A a b$ have in general?

For some time, it was assumed that there is at most one (UIP), i.e. given $p, q : \text{Id}_A a b$, the type $\text{Id} p q$ is inhabited.

Hofmann-Streicher groupoid model: not derivable from J.
How many inhabitants can $ld_A \ a \ b$ have in general?

For some time, it was assumed that there is at most one (UIP), i.e. given $p, q : ld_A \ a \ b$, the type $ld \ p \ q$ is inhabited.

Hofmann-Streicher groupoid model: not derivable from J.
How many inhabitants can $\text{Id}_A a b$ have in general?

For some time, it was assumed that there is at most one (UIP), i.e. given $p, q :\text{Id}_A a b$, the type $\text{Id} p q$ is inhabited.

Hofmann-Streicher groupoid model: not derivable from J.
Uniqueness of Identity Proofs - Refuted

\[a, b, d, e : A \quad c, f : B \]
\[s : \text{Id}_A a a \quad p, q : \text{Id}_A a b \quad u, v : \text{Id}_A b e \quad \ldots \]
UIP is weird anyway

\[BOOL = \{ \text{true, false} \} \]

isomorphisms:

\[id : BOOL \rightarrow BOOL \]

\[\neg : BOOL \rightarrow BOOL \]

So, identity equals negation?!
UIP is weird anyway

\[\text{BOOL} = \{ \text{true, false} \} \]

isomorphisms:

\[id : \text{BOOL} \to \text{BOOL} \]
\[\neg : \text{BOOL} \to \text{BOOL} \]

So, identity equals negation?!
Extensionality

Given:

- \(f : A \rightarrow B \)
- \(g : A \rightarrow B \)
- \(p : \Pi(x : A).Id_B (fx) (gx) \)

Can we construct something of type \(Id_{A\rightarrow B} f g \) (Leibniz)? No!
Given:

- \(f : A \rightarrow B \)
- \(g : A \rightarrow B \)
- \(p : \prod(x : A).Id_B(fx)(gx) \)

Can we construct something of type \(Id_{A \rightarrow B} f g \) (Leibniz)? No!
Extensionality

Given:

- \(f : A \rightarrow B \)
- \(g : A \rightarrow B \)
- \(p : \Pi(x : A).Id_{B}(fx)(gx) \)

Can we construct something of type \(Id_{A \rightarrow B} f g \) (Leibniz)? No!
Idea: Adding extensionality as additional axiom.

But then, assume \(p \) is a (nontrivial) equality proof using this axiom.

Consequence:

\[
\text{subst} \ (\lambda h \to \mathbb{N}) \ p \ 0
\]

Non-canonical natural numbers!
Idea: Adding extensionality as additional axiom.

But then, assume p is a (nontrivial) equality proof using this axiom.

Consequence:

$$\text{subst} \ (\lambda h \rightarrow \mathbb{N}) \ p \ 0$$

Non-canonical natural numbers!
Idea: Adding extensionality as additional axiom.

But then, assume \(p \) is a (nontrivial) equality proof using this axiom.

Consequence:

\[
\text{subst} \ (\lambda h \to \mathbb{N}) \ p \ 0
\]

Non-canonical natural numbers!
Idea: Adding extensionality as additional axiom.

But then, assume p is a (nontrivial) equality proof using this axiom.

Consequence:

\[
\text{subst} \ (\lambda h \rightarrow \mathbb{N}) \ p \ 0
\]

Non-canonical natural numbers!
Univalence and weak omega groupoids

Vladimir Voevodsky
Voevodsky’s suggestion

Do not use \textit{UIP}
...because it is weird and has undesirable consequences!

Do not use the Extensionality Axiom!
...because of the same reason!

Use Univalence instead!
...because it is better - as we will see in a moment!
Voevodsky’s suggestion

Do not use UIP
...because it is weird and has undesirable consequences!

Do not use the Extensionality Axiom!
...because of the same reason!

Use Univalence instead!
...because it is better - as we will see in a moment!
Voevodsky’s suggestion

Do not use UIP
... because it is weird and has undesirable consequences!

Do not use the Extensionality Axiom!
... because of the same reason!

Use Univalence instead!
... because it is better - as we will see in a moment!
Lumsdaine’s and v.d.Berg’s result

for example:

- $a := b := x$
- $p := p' := \text{refl}_x$
- $H := H' := \text{refl}_{\text{refl}_x}$
- $\text{refl}_{\text{refl}_{\text{refl}_x}}$
- \ldots
Lumsdaine’s and v.d.Berg’s result

Univalence and weak omega groupoids

Weak ω groupoid

for example:

- $a := b := x$
- $p := p' := \text{refl}_x$
- $H := H' := \text{refl}_{\text{refl}_x}$
- $\text{refl}_{\text{refl}_{\text{refl}_x}}$
- \ldots
Lumsdaine’s and v.d.Berg’s result

for example:

- $a := b := x$
- $p := p' := \text{refl}_x$
- $H := H' := \text{refl}_{\text{refl}_x}$
- $\text{refl}_{\text{refl}_{\text{refl}_x}}$
- ...
Lumsdaine’s and v.d.Berg’s result

for example:

- $a := b := x$
- $p := p' := \text{refl}_x$
- $H := H' := \text{refl}_{\text{refl}_x}$
- $\text{refl}_{\text{refl}_{\text{refl}_x}}$
- \ldots

Weak ω groupoid
A very well-known structure...

...in Topology!

(source: Wikipedia)
A disc

a (nondependent!) type - we call it X

a topological space - we call it X
A disc

two terms

two points
A disc

? a path
A disc

\[a, b : X \]
\[p : \text{Id} \; a \; b \]

\[a, b \in X \]
\[p : [0, 1] \rightarrow X \]
\[p(0) = a \]
\[p(1) = b \]
A disc

\[p^{-1} : \text{Id} \ b \ a \]

\[p^{-1} : [0, 1] \to X \]

\[p^{-1}(t) = p(1 - t) \]
A disc

\[p : a \equiv b \]
\[q : \text{Id } b \rightarrow c \]

\[a, b \in X \]
\[p : [0, 1] \rightarrow X \]
\[p(0) = a \]
\[p(1) = b \]

\[q : [0, 1] \rightarrow X \]
\[q(0) = b \]
\[q(1) = c \]
A disc

\[q \circ p : \text{Id} a c \]

\[q \circ p : [0, 1] \to X \]

\[x \mapsto \begin{cases}
 p(2x), & x < 0.5 \\
 q(2x - 1), & \text{else}
\end{cases} \]
Another set

\(Id\ a\ c\ \text{not inhabited}\)

Not path-connected
A disc

\[p, p' : \text{Id} \ a \ b \]

\[p, p' : [0, 1] \to X \]
A disc

\[H : [0, 1]^2 \to X \]
\[H(0, \cdot) = p \]
\[H(1, \cdot) = p' \]
\[H(t, 0) = a \]
\[H(t, 1) = b \]
A disc

\[H : [0, 1]^2 \rightarrow X \]
\[H(0, \cdot) = p \]
\[H(1, \cdot) = p' \]
\[H(t, 0) = a \]
\[H(t, 1) = b \]

\[p : [0, 1]^1 \rightarrow X \]
\[a : [0, 1]^0 \rightarrow X \]
A ring

\[H : \text{Id } p \ x \ p' \]

\[H : [0, 1]^2 \rightarrow X \]
\[H(0, \cdot) = p \]
\[H(1, \cdot) = p' \]
\[H(t, 0) = a \]
\[H(t, 1) = b \]
A disc

\[H : \text{Id} \, p \, p' \]

\[H : [0, 1]^2 \rightarrow X \]
\[H(0, \cdot) = p \]
\[H(1, \cdot) = p' \]
\[H(t, 0) = a \]
\[H(t, 1) = b \]
A disc

\[H' : \text{Id}_p \, p \, p' \]

\[H'(0, \cdot) = p \]
\[H'(1, \cdot) = p' \]
\[H'(t, 0) = a \]
\[H'(t, 1) = b \]
A disc

\[K : \text{Id } H' \Rightarrow H \]

\[K : [0, 1]^3 \rightarrow X \]

\[K(0, \cdot, \cdot) = H' \]

\[\ldots \]
Putting it together

\[\begin{array}{ccc}
 a & \xrightarrow{p} & b \\
 H' & \xrightarrow{K} & H \\
 \end{array} \]

\[\begin{array}{ccc}
 p & \xrightarrow{K} & p' \\
 \end{array} \]
The (canonical) mapping from equalities to weak equivalences is a weak equivalence.

- No need for UIP
- Extensionality
- Only canonical members of \mathbb{N}
- A "completely natural axiom" so that everything works as in homotopical intuition
Voevodsky again

Univalence Axiom

The (canonical) mapping from equalities to weak equivalences is a weak equivalence.

- No need for UIP
- Extensionality
- Only canonical members of \mathbb{N}
- A "completely natural axiom" so that everything works as in homotopical intuition
Univalence again

Voevodsky again

Univalence Axiom

The (canonical) mapping from equalities to weak equivalences is a weak equivalence.

- No need for UIP
- Extensionality
- Only canonical members of \mathbb{N}
- A “completely natural axiom” so that everything works as in homotopical intuition
No need for UIP

Extensionality

Only canonical members of \mathbb{N}

a “completely natural axiom” so that everything works as in homotopical intuition
Univalence again

Voevodsky again

Univalence Axiom

The (canonical) mapping from equalities to weak equivalences is a weak equivalence.

- No need for UIP
- Extensionality
- Only canonical members of \mathbb{N}
- a “completely natural axiom” so that everything works as in homotopical intuition
Summary

Hopes:

Homotopic Models:
- new results and intuition in both type and homotopy theory
- better understanding of the connection between logic and topology

Univalence:
- avoiding a couple of problems in a natural way
 - UIP
 - Extensionality
 - Canonicity of natural numbers
- better foundation than Set Theory for (constructive) mathematics
- at the same time, natively supported by proof assistants
Summary

Hopes:

Homotopic Models:
- new results and intuition in both type and homotopy theory
- better understanding of the connection between logic and topology

Univalence:
- avoiding a couple of problems in a natural way
 - UIP
 - Extensionality
 - Canonicity of natural numbers
- better foundation than Set Theory for (constructive) mathematics
- at the same time, natively supported by proof assistants
Summary

Hopes:

Homotopic Models:
- new results and intuition in both type and homotopy theory
- better understanding of the connection between logic and topology

Univalence:
- avoiding a couple of problems in a natural way
 - UIP
 - Extensionality
 - Canonicity of natural numbers
- better foundation than Set Theory for (constructive) mathematics
- at the same time, natively supported by proof assistants
Summary

Hopes:

Homotopic Models:

- new results and intuition in both type and homotopy theory
- better understanding of the connection between logic and topology

Univalence:

- avoiding a couple of problems in a natural way

 UIP

 Extensionality

 Canonicity of natural numbers

- better foundation than Set Theory for (constructive) mathematics
- at the same time, natively supported by proof assistants
Summary

Hopes:

Homotopic Models:
- new results and intuition in both type and homotopy theory
- better understanding of the connection between logic and topology

Univalence:
- avoiding a couple of problems in a natural way
 - UIP
 - Extensionality
 - Canonicity of natural numbers
- better foundation than Set Theory for (constructive) mathematics
 - at the same time, natively supported by proof assistants
Summary

Hopes:

Homotopic Models:
- new results and intuition in both type and homotopy theory
- better understanding of the connection between logic and topology

Univalence:
- avoiding a couple of problems in a natural way
 - **UIP**
 - **Extensionality**
 - **Canonicity of natural numbers**
- better foundation than Set Theory for (constructive) mathematics
- at the same time, natively supported by proof assistants
(Other) People I want to mention

- Thorsten Altenkirch
- Peter Arndt
- Steve Awodey
- Thierry Coquand
- Nicola Gambino
- Richard Garner
- Chris Kapulkin
- Dan Licata
- Mike Shulman
- Thomas Streicher
- Michael Warren
- ... and many more
Even more people I want to Thank

You.