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Constructive notions of ordinals. Ordinal numbers, or simply ordinals, can be seen as a
generalisation of the natural numbers. They allow the characterisation of possibly infinite orders,
and termination proofs are one of their main applications. There are various formulations of
(initial segments of) ordinals that coincide in a classical setting, but have very different behaviour
constructively. One such formulation is the ordinal notation system of Cantor normal forms
(binary trees with a certain property; different presentations are presented in [FXG20]). Another
formulation are set-theoretic ordinals (extensional, transitive, wellfounded orders; developed in
[Uni13, Chp 10.3] and [Esc21]). Yet another formulation are Brouwer ordinal trees (constructed
with zero, successors, and limits; cf. Kleene’s O [Chu38, Kle38]). We have compared these three
formulations at TYPES’21 [KNFX21b], and a full publication is now available [KNFX21a].

Decidability and partial decidability of properties of ordinals. As a rule of thumb,
Cantor normal forms have decidable properties as long as we only consider finitely many of
them: We can always check whether two given trees are equal, or which of the two represents
the larger ordinal, and so on. It is similarly clear that properties of set-theoretic ordinals are
generally undecidable: If P is proposition (or subsingleton, i.e. a type with at most one element),
then the empty order on P is a set-theoretic ordinal. Being able to decide whether this ordinal
P is equal to 1 directly corresponds to the law of excluded middle. Brouwer ordinal trees sit
in the “sweet spot” in the middle: some of their properties are fully decidable, but many are
“partially” decidable. In this work, we explore how this can be expressed and which statements
can be proved internally in homotopy type theory.

Brouwer ordinal trees. Of course, how much is decidable about Brouwer ordinal trees
depends on how exactly we define them. A very basic version is the inductive type O with
constructors zero : O, suc : O → O, and sup : (N → O) → O, as sometimes considered in
the functional programming community. This type is however too simplistic for our purposes
and, unlike the other discussed formulations of ordinals, does not even come with the “correct”
notion of equality; if s : N → O is a sequence, then sup(s0, s1, s2, . . .) and sup(s1, s0, s2, . . .)
are different trees. In [KNFX21a], we construct the type Brw : hSet mutually with a relation
≤ : Brw → Brw → hProp quotient inductive-inductively [ACD+18]. The constructors for Brw

are zero : Brw, succ : Brw → Brw, and limit : (N <−→ Brw) → Brw, where N <−→ Brw are strictly
increasing sequences. In addition, we have a path constructor bisim : f ≈≤ g → limit f = limit g,
where f ≈≤ g means that f and g are bisimilar sequences.

Decidable properties of Brouwer trees. The notion of decidability is standard: We say
that a proposition P is decidable if we have P + ¬P , and a predicate R : Brw → hProp is
decidable if every R(x) is decidable.
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Lemma 1. It is decidable whether x : Brw is finite, i.e. whether it is in the image of the obvious
map N→ Brw. If n is a finite ordinal, then equality with n and comparisons with n are decidable;
i.e. the predicates ( = n), ( > n), and ( < n) are decidable. Similarly, the predicates ( < ω)
and ( ≥ ω) are decidable.

Proof. This is a consequence of the fact that Brw satisfies the classification property of
[KNFX21a]: For a given ordinal, we can check whether it is zero, a successor, or a limit,
and a limit cannot be finite. Note that this argument crucially relies on the fact that our limit
constructor takes strictly increasing sequences as argument. Without this requirement, all of
the properties mentioned in the lemma would be incorrect.

Note that, while ( ≥ ω) is decidable, being able to decide ( > ω) is equivalent to LPO, which
states: ∀f : N→ 2.(∃n.fn = 1) ∨ (∀n.fn = 0).

Partial decidability. While internal decidability is standard, other notions of synthetic
computability theory (cf. [BR87, Bau06, FKS19]) are not used as much. In our work, we
consider three formulations of partial decidability. Let P be a proposition:

1. We say that P is semidecidable if ∃α : N→ Bool.(∃i.αi = 1)↔ P . This definition is due
to Bauer [Bau06] (see also [EK17, FLWD+18, dJ22]).

2. Using the free ω-complete partial order on the unit type [ADK17], equivalent to the
Sierpinski type S [Vel17, CUV19], one can define P to be Sierpinski-semidecidable if
∃s : S.(s = >)↔ P . This notion of semidecidability has been used by Gilbert [Gil17].

3. If x : Brw is an ordinal, we can say that P can be decided in x steps if ∃y : Brw.(y > x)↔ P .

Lemma 2. P is semidecidable if and only if it can be decided in ω steps. If P is semidecidable,
then it is also Sierpinski-semidecidable.

Proof. It is easy to translate between semidecidable and decidable in ω steps. Given a binary
sequence α, we define an increasing sequence f : N → Brw by f0 ≡ zero, fn+1 ≡ fn + ωαn .
Similarly, given x : Brw, we define a binary sequence α as follows: if x is finite, then α is
constantly 0. Otherwise, if x is a successor (and infinite), α is constantly 1. The remaining
case is that x is limit(f). If fn is finite, we define αn to be 0, else 1. In both cases, we have
(∃i.αi = 1)↔ (x > ω).

In the same way, given a binary sequence α, we immediately get s : S by taking the least
upper bound of α.

A problem that may separate semidecidability and Sierpinski-semidecidability is the following:

Proposition 3. Given x : Brw and n, k : N, it is Sierpinski-semidecidable whether x > ω ·n+k.

Proof. We define sω·n+k(x) : S by induction on x and transfinite induction on ω · n+ k. The
most interesting case is sω·(n+1)(limit(f)), which we define as the least upper bound of the
sequence i 7→ sω·n(fi). This uses that the limit of a sequence f is, for any i, at least fi + ω.

We expect, but have not proved, that x > ω · n+ k cannot be decided in ω steps. Finally, we
give examples for properties that are decidable in a number of steps different from ω:

Proposition 4. The following three statements are equivalent: (1) P is decidable; (2) P is
decidable in 0 steps; (3) P is decidable in a finite number of steps.

Proposition 5. The twin prime conjecture is decidable in ω3 steps. More generally, if P : N→
hProp is semidecidable and P (n+ 1) implies P (n), then ∀n.P (n) is decidable in ω3 steps.

In the future, we hope to explore internal semidecidability and its applications further.
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