Programs as Proofs:

Why mathematicians become programmers, and
computer scientists do homotopy theory

Nicolai Kraus
At Freie Universitat Berlin,
2025

r Unive[sitg of
. BB Nottingham

Dependent Type Theory

Examples: int, double, bool
useful for catching mistakes, partial documentation:

int calculatePrime(int n) {

Examples: int, double, bool
useful for catching mistakes, partial documentation:

int calculatePrime{int n) £

return 7;

Dependent Types (eg Agda)

calculatePrime : (n : N) - X[p : N] (isPrime p) x (p > n)
calculatePrime = ?

Dependent Types (eg Agda)

calculatePrime : (n : N) - X[p : N] (isPrime p) x (p > n)
calculatePrime = ? \

root of syntax tree

Primes and twin primes

Consider two exercises in Agda:

calculatePrime : (n : N) - [p : N], (isPrime p) x (p > n)
calculatePrime = ?

calcTwinPrime : (n : N) - X[p : N], (isPrime p) x (p > n) x (isPrime (p + 2))
calcTwinPrime = ?

Primes and twin primes

Consider two exercises in Agda:

calculatePrime : (n : N) - [p : N], (isPrime p) x (p > n)
calculatePrime = ?

calcTwinPrime : (n : N) - X[p : N], (isPrime p) x (p > n) x (isPrime (p + 2))
calcTwinPrime = ?

Agda type- and termination-checks. Programming = PrOVing

Constructive Mathematics

Constructive Mathematics

Definition: A foundation is constructive if, whenever we
prove that a solution exists, we can calculate It.

(... and we can’t do this if we use LEM or AC!)

Same definition in CS language: A proof assistant
Implements a constructive foundation if we can run
our programs.

Constructivity - why care?

1. Philosophical reasons (... no idea)

2. Certain constructive type theories are the internal languages
of certain toposes / mathematical objects.

3. In practice: terms reduce; sometimes much easier to work
with in proof assistants; we get solutions “for free”.

What is a type?

We see: We think of:
N set {0,1,2,...}
p > D a proposition
isPrime p a proposition
type A an unspecified set
a term x : A an element of the set

What is a type?

We see: We think of:
Syntax N set {0,1,2,...]
(mostly Semanti

. P >N " NnUcs

determined 2 proposition (our choice!)
by the type 1sPrime P a proposition
theory)

type A an unspecified set

a term x : A an element of the set

Martin-Lof’s Identity Type

Given atype Aandtwoterms X, y : A,
thereis atype (X = Vy).

We always have refl : x = X.

To define

F:(xy :A) - (p:x=y)-C0Cxy,p)
It suffices to define
f': (x : A) - C(x, x, refl).

formation rule

introduction rule

elimination rule

()

Examples with =

Exercise; o Clayp
f) 7(’7) /m
sym : (x y : A) a((=y) - (y = x)
Solution:

Using the elimination rule for =, we only need
sym’” : (x : A) - (X = Xx)
which Is easy. L~

Examples with =

Exercise: T s Clay, p)
trans : (x y|z : A) -
p(x =y) xly =2) - (x = 2)
Solution:

Using the elimination rule for =, we only need
trans’ : (x z : A) » (X =2) - (X = z)
which is easy. 53

HoTT: view types as spaces

Homotopy
Type Theory

Univalent Foundations of Mathematics

Examples with =

Exercise:
K: (x : A) - (p :

No solution, as shown
by Hofmann and Streicher’s
Groupoid Model.

Intuition for =

“Types behave like higher groupoids
/ homotopy types.”

Intuition for =

A type

—+ O
X
1 1

Intuition for =

/\ - Which of the
yp€ following make
X 7 sense and are
Y provable?
p i X =
1. p::q
q: X =
tT @ X =

2. (y,p) ==(z,9)

3. g==t

Intuition for =

/\ . Which of the
yp€ following make
X 7 sense and are
Y provable?
p i X =
1. p==q¢
q . X = '}')’}76 g//m’“./
tT @ X =
2. (y,p) ==(z,9)

3. g==t

Intuition for =

A Which of the
type following make
X 7 sense and are
Y provable?
P X =
1. p:: /
q . X = '}'/}96 V2 a
tT @ X =
2. (y,p)==(z,q)
in e S (wh) xzu
yes/

3. q ==

Intuition for =

A Which of the
type following make
X 7 sense and are
Y provable?
P X =
1. p:: /
q . X = '}'/}96 V2 a
tT @ X =
2. (y,p)==(z,q)
in e S (wh) xzu
yes/
3. q ==

v acé Z}‘ . é‘f 7L
,«Z)Z/; /Q/zfl/aé/e

Intuition for =

A type Def (Voevodsky):
A type Xis

X, y y £ contractible if

. _ Y(Xo : X).
X =

p (y:X) =X =Y

q - X = is inhabited.

t : X = Question:

Is the torus (A)
contractible?

Application 1: Circle

data S* : Type where

base : S1
loop : base == base

Application 1: Circle

loop

data S* : Type where

base : S1? base

loop : base == base

Application 1: Circle

loop

data S* : Type where

base : S1? base

loop : base == base

“Synthetic homotopy theory”
Example result: m,(S°) = Z/27 (Brunerie)

Application 2: Groups

record aGroup : Typei where
field

G : Set
t: 6G-G-> G

assoc : V{xy z} - ((x - y) - 2) ==(x - (y + 2))

e : G
e-right : V{x} - (x - e) == x
e-left : V{x} - (e - x) == x

inv : G - G
inv-left : V{x} - (inv x « x) == e
inv-right : V{x} - (x - inv x) == e

Application 2: Groups

re1c=9r%daGroup : Type: where record cGroup : Typei where
ie 3
field
G : Set
t: GGG

== X : Type

assoc : V{xy z} - ((x - y) - 2)==(x - (y - 2)) = xyp

e : G h : "i.s-1-type X

SSPRhG: @ Vi) s (0 B B =S X c : is-connected X

e-left : V{x} - (e - x) == x

inv : G - G
inv-left : V{x} - (inv x « x) == e
inv-right : V{x} - (x - inv x) == e

Application 2: Groups

re1c=9r%daGroup : Type: where record cGroup : Typei where
1e .F'
ield
G : Set
t: GG - G
== X : Type
assoc : V{xy z} - ((x - y) - 2)==(x - (y - 2)) = xyp
e : G h : "i.s-1-type X
e=xrights i Vi) = (06 & &) =5 c : is-connected X
e-left : V{x} - (e - x) == x
?"V :6-G _ Given a concrete Group (X,x,h,c),
tnv-left : V{x} ~ (inv x - x) == e we can construct an abstract group by setting:
inv-right : V{x} - (x - inv x) == e G := (x==X)
e = refl

Inv := sym (and so on)

“Mathematlcal DSLs”

-

N
Martin-Lof type theory Dlrected type theories
(mechanization of maths, (for directed higher

verified programming) structures)

_ J \ J
" Homotopy Type Theory | (" Two-level type

(same as MLTT, theory
._plus synthetic homotopy theory) (framework for
Modal type theory | Cubical Type Theory | €xtensions St“)dy

(if modalities are (better computation, meta-theory) /
needed) but fewer models than
_ jk HOTT) (and so on)

“Mathematlcal DSLs”

-

N
Martin-Lof type theory Dlrected type theories
(mechanization of maths, (for directed higher

verified programming) structures)
_ J

Homotopy Type Theory wo-level type

theory
(framework for

(same as MLTT,
plus synthetic homotopy theor

(Modal type theory\ Cubical Type Theory extensions, study
(if modalities are (better computation, meta-theory) /
_ needed)) but fewer models than (and 50 on)

HoTT)

