Functions out of Higher Truncations

CSL’15 Berlin

Nicolai Kraus*

on joint work with

Paolo Capriotti and Andrea Vezzosi

*FP Lab, University of Nottingham; supported by EPSRC grant EP/M016994/1

08/09/15
In Homotopy Type Theory
(i.e. dependent type theory with \(\Sigma, \Pi, =,\) univalence, HITs), how can we
Construct functions \(\|A\|_n \to B\)
if \(B\) is \((n + 1)\)-truncated?
In Homotopy Type Theory

✓ ✓ (clear, I hope) (does not matter)

(i.e. dependent type theory with \(\Sigma, \Pi, =\), univalence, HITs), how can we

Construct functions \(\|A\|_n \to B\)

? ? (will explain)

if \(B\) is \((n + 1)\)-truncated?
Reminder: Identity/Equality Types in Martin-Löf’s Dependent Type Theory

- If A is a type and $x, y : A$, then $x = y$ is also a type (a.k.a. $x =_A y$ or $\text{Id}_A(x, y)$)
- Does UIP hold? I.e. if $p, q : x = y$, do we automatically get $p = q$?
- Hofmann-Streicher 1994: No! [LICS Test of Time Award 2014]
- Types can have non-trivial higher structure (fist step of birth of Homotopy Type Theory)
Introduction: Truncation Levels and Truncations

- “being n-truncated” is a property of types [due to VV]
- intuition: “trivial on levels $\geq n$”
- Def:
 1. A is (-2)-truncated iff $A \simeq \text{Unit}$
 2. A is ($n + 1$)-truncated iff $x = y$ is n-truncated
 $\forall x, y : A$
- basic lemma: A is n-truncated $\Rightarrow A$ is $(n + 1)$-truncated
- examples:
 - (-2)-truncated a.k.a. contractible: Unit
 - (-1)-truncated a.k.a. propositional: \emptyset
 - 0-truncated a.k.a. set, satisfying UIP: \mathbb{N}, Bool, …
 - 1-truncated: universe of sets
- …
Introduction: Truncation Levels and Truncations

- $\|A\|_n \to B \simeq (A \to B)$ if B is n-truncated
- Intuition: $\|_\|_n$ "truncates" a type (thus "loses information"!), have $\|_\| : A \to \|A\|_n$
Back to the topic of this talk

So, how to get a map \(\|A\|_n \to B \) in general?
Or: When does \(f : A \to B \) factor through \(\|A\|_n \)?

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \\
\|A\|_n & \xrightarrow{f'} & B
\end{array}
\]

* always, if \(B \) is \(n \)-truncated
* this paper:

Theorem

If \(B \) is \((n+1)\)-truncated:

\[
f : A \to B \text{ factors through } \|A\|_n
\]

iff

\(f \) induces trivial maps on all \((n+1)\)-st loop spaces.
Special cases of the result

Special case \(n = -1 \)

If \(B \) is 0-truncated, i.e. has unique identity proofs:

\[
f : A \to B \text{ factors through } \|A\|_{-1}
\]

iff

\[
f \text{ is weakly constant: } \prod_{x,y:A} f(x) = f(y).
\]

\[
A \xrightarrow{f} B
\]

\[
\|A\|_{-1} \xrightarrow{|-|} f' \xrightarrow{f} B
\]

\(f \) must be weakly constant.

This was already known

[K-Escardó-Coquand-Altenkirch 2014].
Special cases of the result

Special case $n = 0$

If B is 1-truncated:

$$f : A \to B$$

factors through $\|A\|_0$

iff

$$ap_f : (x = y) \to (f(x) = f(y))$$

is weakly constant.

Known from the Rezk completion

[Ahrens-Kapulkin-Shulman 2014].
Special cases of the result

Special case \(n = 1 \)

If \(B \) is 2-truncated:

\[f : A \rightarrow B \] factors through \(\|A\|_1 \)

iff

\(f \) introduces trivial maps on all second homotopy groups / loop spaces:

\[\text{ap}_f^2 : \Omega^2(A, a) \rightarrow \Omega^2(B, f(a)) \] weakly constant.

This (and all other cases) are new.
Two proofs of our result:

* first proof:
 - given $f' : \|A\|_n \to B$, we do get $f : A \to B$ which is trivial on all $(n+1)$-st loop spaces
 - if A is n-connected, this map is an equivalence
 - piece together maps on the “n-connected components” of A

* second proof:
 - construct a higher inductive type $H^{A,n}$
 - show that $H^{A,n}$ has a suitable elimination principle
 - show $H^{A,n} \simeq \|A\|_n$
Overview: Open and Solved Cases

<table>
<thead>
<tr>
<th>n-tr. B</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\parallel A \parallel_?$</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>...</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>-1</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>...</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>0</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>...</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>1</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>...</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>2</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>...</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>3</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>...</td>
<td>![Checkmark]</td>
</tr>
<tr>
<td>...</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>![Checkmark]</td>
<td>...</td>
<td>![Checkmark]</td>
</tr>
</tbody>
</table>

Solved in: [K-Escardó-Coquand-Altenkirch 2014], [Ahrens-Kapulkin-Shulman 2014], [K 2015], [HERE]