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Examples: int, double, bool
useful for catching mistakes, partial documentation:

int calculatePrime(int n) {



Examples: int, double, bool
useful for catching mistakes, partial documentation:

int calculatePrime(int n) {

return 7;



Dependent Types (eg Agda)

calculatePrime : (n : N) - X[ p : N ] (isPrime p) x (p > n)
calculatePrime = ?
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root of syntax tree



Primes and twin primes

Consider two exercises in Agda:

calculatePrime : (n : N) - [ p : N ], (isPrime p) x (p > n)
calculatePrime = ?

calcTwinPrime : (n : N) - Z[ p : N ], (isPrime p) x (p > n) x (isPrime (p + 2))
calcTwinPrime = ?



Primes and twin primes

Consider two exercises in Agda:

calculatePrime : (n : N) - [ p : N ], (isPrime p) x (p > n)
calculatePrime = ?

calcTwinPrime : (n : N) - Z[ p : N ], (isPrime p) x (p > n) x (isPrime (p + 2))
calcTwinPrime = ?

Agda type- and termination-checks. Programming = PrOVing



What is a type?

We see: We think of:
N set {0,1,2,...]
p=>n a proposition
isPrime p a proposition
type A an unspecified set
a term x : A an element of the set



What is a type?

We see: We think of:
Syntax N set {0,1,2,...]
(mostly Semanti

. P >N .r nNUcs

determined a proposition (Our Choice!)
by the type  isPrime p a proposition
theory)

type A an unspecified set

a term x : A an element of the set



HoTT: view types as spaces

Homotopy
Type Theory

Univalent Foundations of Mathematic




Martin-Lof’s Identity Type

Given atype Aandtwoterms X, y : A,
thereis atype (X = Vy).

We always have refl : x = X.

To define

F:(xy :A) - (p:x=y)-CXxy,p)
It suffices to define
f': (x : A) - C(x, x, refl).

formation rule

introduction rule

elimination rule

(9)



Examples with =

Exercise:
sym : (Xy : A) - (x=vy) - (y = X)

Solution:
Using the elimination rule for =, we only need
sym’” : (x : A) - (X = X)
which is easy. L~




Examples with =

Exercise; o Clayp
f) 7(’7) /m
sym : (x y : A) a(( =y) - (y = x)
Solution:

Using the elimination rule for =, we only need
sym’” : (x : A) - (X = Xx)
which Is easy. L~




Examples with =

Exercise:
trans : (xy z : A) -
(X =y) - (y=12z) - (x = 2)

Solution:
Using the elimination rule for =, we only need
trans’ : (x z : A) » (x =12) - (X = z)
which is easy. ‘oo




Examples with =

Exercise: T s Clay, p)
trans : (x y|z : A) -
p(x =y) xly =2) - (x = 2)
Solution:

Using the elimination rule for =, we only need
trans’ : (x z : A) » (X =2) - (X = z)
which is easy. 53




Examples with =

Exercise:
K: (x : A) - (p :

No solution, as shown
by Hofmann and Streicher’s ;
Groupoid Model.




Intuition for =

“Types behave like higher groupoids
/ homotopy types.”



Intuition for =

A type

—+ O
X
1 1




Intuition for =

/\ - Which of the
yp€ following make
X 7 sense and are
Y provable?
p i X =
1. p::q
q: X =
tT @ X =

2. (y,p) ==(z,9)

3. g==t



Intuition for =
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Y provable?
p i X =
1. p==q¢
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2. (y,p) ==(z,9)

3. g==t



Intuition for =

A Which of the
type following make
X 7 sense and are
Y provable?
P X =
1. p:: /
q . X = '}'/}96 V2 a
tT @ X =
2. (y,p)==(z,q)
in e S (wh) xzu
yes/

3. q ==



Intuition for =

A Which of the
type following make
X 7 sense and are
Y provable?
P X =
1. p:: /
q . X = '}'/}96 V2 a
tT @ X =
2. (y,p)==(z,q)
in e S (wh) xzu
yes/
3. q ==

v acé Z}‘ . é‘f 7L
,«Z)Z/; /Q/zfl/aé/e



Intuition for =

A type Def (Voevodsky):
A type Xis

X, y y £ contractible if

. _ Y(Xo : X).
X =

p (y:X) =X =Y

q - X = is inhabited.

t : X = Question:

Is the torus (A)
contractible?




Application 1: Circle

data S* : Type where

base : S?
loop : base == base
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loop

data S* : Type where

base : S? base
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Application 1: Circle

loop

data S* : Type where

base : S? base

loop : base == base

“Synthetic homotopy theory”
Example result: m,(S°) = Z/27 (Brunerie)



Application 2: Groups

re;g»r%daGroup : Type: where record cGroup : Typei where
1e -|‘-'
ield
G : Set
: GGG
i B X : Type
assoc : V{xy z} - ((x - y) - 2)==(x+ (y - 2)) X ° Xyp
e: G h : is-1-type X
e-right : V{x} - (x - e) == x c : is-connected X
e-left : V{x} - (e - x) == x
?nv : G- G _ Given a concrete Group (X,x,h,c),
inv-left : V{x} - (inv x + x) == e we can construct an abstract group by setting:
inv-right : V{x} - (x - inv x) == e G = (Xx==X)
e = refl

Inv := sym (and so on)



“Mathematlcal DSLs”

-

N
Martin-Lof type theory Dlrected type theories
(mechanization of maths, (for directed higher

verified programming) structures)
\_ /) J
" Homotopy Type Theory (" Two-level type
(same as MLTT, theory
_plus synthetic homotopy theory) (framework for
"Modal type theory | Cubical Type Theory | extensions, study

(if modalities are (better computation, J\ meta-theory) /

needed) ) but fewer models than

~ (and so on)

\_ HoTT)
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