
Dependent Type Theory
From propositions and sets to spaces

Nicolai Kraus
BCTCS 2025

Dependent Type Theory

Rocq
/Coq

Types
Examples: int, double, bool
 useful for catching mistakes, partial documentation:

Types
Examples: int, double, bool
 useful for catching mistakes, partial documentation:

Dependent Types (eg Agda)

Dependent Types (eg Agda)

root of syntax tree

Primes and twin primes
Consider two exercises in Agda:

Primes and twin primes
Consider two exercises in Agda:

Programming = ProvingAgda type- and termination-checks.

What is a type?

We see: We think of:

set {0,1,2,...}

a proposition

a proposition

an unspecified set

an element of the set

What is a type?

We see: We think of:

set {0,1,2,...}

a proposition

a proposition

an unspecified set

an element of the set

Syntax
(mostly
determined
by the type
theory)

Semantics
(our choice!)

HoTT: view types as spaces

Martin-Löf’s Identity Type

Given a type A and two terms x, y : A,
 there is a type (x = y).

We always have refl : x = x.

To define
 F : (x y : A) → (p : x = y) → C(x,y,p)
it suffices to define
 f’: (x : A) → C(x, x, refl).

formation rule

introduction rule

elimination rule
(“J”)

Examples with =

Exercise:
 sym : (x y : A) → (x = y) → (y = x)

Solution:
 Using the elimination rule for =, we only need
 sym’ : (x : A) → (x = x)
 which is easy.

Examples with =

Exercise:
 sym : (x y : A) → (x = y) → (y = x)

Solution:
 Using the elimination rule for =, we only need
 sym’ : (x : A) → (x = x)
 which is easy.

Solution:
 Using the elimination rule for =, we only need
 trans’ : (x z : A) → (x = z) → (x = z)
 which is easy.

Examples with =
Exercise:
 trans : (x y z : A) →
 (x = y) → (y = z) → (x = z)

Solution:
 Using the elimination rule for =, we only need
 trans’ : (x z : A) → (x = z) → (x = z)
 which is easy.

Examples with =
Exercise:
 trans : (x y z : A) →
 (x = y) → (y = z) → (x = z)

Examples with =

Exercise:
 K : (x : A) → (p : x = x) → (p = refl)

No solution, as shown
by Hofmann and Streicher’s
Groupoid Model.

Intuition for =

A type
x,y : A
p : x = y

“Types behave like higher groupoids
 / homotopy types.”

x
y

xxx

p

Intuition for =
A type
x,y,z : A
p : x = y
q : x = z
t : x = z

A

xxx

yy

z

p

q

t

Intuition for =
A type
x,y,z : A
p : x = y
q : x = z
t : x = z

A

xxx

yy

z

p

q

t
Which of the
following make
sense and are
provable?

1. p == q

2. (y,p) == (z,q)

3. q == t

Intuition for =
A type
x,y,z : A
p : x = y
q : x = z
t : x = z

A

xxx

yy

z

p

q

t
Which of the
following make
sense and are
provable?

1. p == q

2. (y,p) == (z,q)

3. q == t

Intuition for =
A type
x,y,z : A
p : x = y
q : x = z
t : x = z

A

xxx

yy

z

p

q

t
Which of the
following make
sense and are
provable?

1. p == q

2. (y,p) == (z,q)

3. q == t

Intuition for =
A type
x,y,z : A
p : x = y
q : x = z
t : x = z

A

xxx

yy

z

p

q

t
Which of the
following make
sense and are
provable?

1. p == q

2. (y,p) == (z,q)

3. q == t

Intuition for =
A type
x,y,z : A
p : x = y
q : x = z
t : x = z

A

xxx

yy

z

p

q

t Def (Voevodsky):
A type X is
contractible if
Σ(x₀ : X).
 (y : X) → x₀ = y
is inhabited.

Question:
Is the torus (A)
contractible?

Application 1: Circle

Application 1: Circle
loop

base

Application 1: Circle
loop

base

“Synthetic homotopy theory”
Example result: π₄(S³) /2 (Brunerie)≃ℤ ℤ

Application 2: Groups

Given a concrete Group (X,x,h,c),
we can construct an abstract group by setting:
 G := (x==x)
 e := refl
 inv := sym (and so on)

“Mathematical DSLs”
Martin-Löf type theory
(mechanization of maths,

 verified programming)

Homotopy Type Theory
(same as MLTT,

plus synthetic homotopy theory)

Directed type theories
(for directed higher

structures)

Cubical Type Theory
(better computation,

but fewer models than
HoTT)

Two-level type
theory

(framework for
extensions, study

meta-theory)

(and so on)

Modal type theory
(if modalities are

needed)

“Mathematical DSLs”
Martin-Löf type theory
(mechanization of maths,

 verified programming)

Homotopy Type Theory
(same as MLTT,

plus synthetic homotopy theory)

Directed type theories
(for directed higher

structures)

Cubical Type Theory
(better computation,

but fewer models than
HoTT)

Two-level type
theory

(framework for
extensions, study

meta-theory)

(and so on)

Modal type theory
(if modalities are

needed)

Thanks!

