Dependent Type Theory From propositions and sets to spaces

Nicolai Kraus
BCTCS 2025

Dependent Type Theory

Types

Examples: int, double, bool useful for catching mistakes, partial documentation:

```
int calculatePrime(int n) {
    ...
}
```

Types

Examples: int, double, bool useful for catching mistakes, partial documentation:

```
int calculatePrime(int n) {
  return 7;
}
```

Dependent Types (eg Agda)

```
calculatePrime : (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}] (isPrime p) × (p > n) calculatePrime = ?
```

Dependent Types (eg Agda)

```
calculatePrime : (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}] (isPrime p) × (p > n) calculatePrime = ?
```

Primes and twin primes

Consider two exercises in Agda:

```
calculatePrime : (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}], (isPrime p) × (p > n) calculatePrime = ?  \text{calcTwinPrime : } (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}], \text{ (isPrime p)} \times (p > n) \times \text{ (isPrime (p + 2))}  calcTwinPrime = ?
```

Primes and twin primes

Consider two exercises in Agda:

```
calculatePrime : (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}], (isPrime p) × (p > n) calculatePrime = ?  \text{calcTwinPrime : } (n : \mathbb{N}) \to \Sigma[p : \mathbb{N}], \text{ (isPrime p)} \times (p > n) \times \text{ (isPrime (p + 2))}  calcTwinPrime = ?
```

Agda type- and termination-checks. **Programming = Proving**

What is a type?

We see:

N

p > n

isPrime p

type A

a term x : A

We think of:

set {0,1,2,...}

a proposition

a proposition

an unspecified set

an element of the set

What is a type?

Syntax (mostly determined by the type theory) We see:

N

p > n

isPrime p

type A

a term x : A

We think of:

set {0,1,2,...}

a proposition

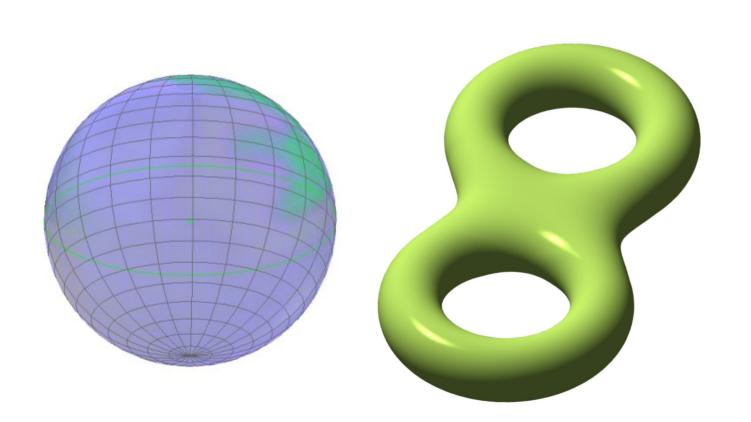
a proposition

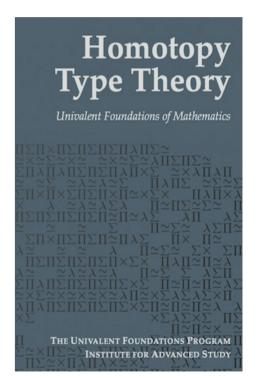
an unspecified set

an element of the set

Semantics (our choice!)

HoTT: view types as spaces





Martin-Löf's Identity Type

Given a type A and two terms x, y: A, there is a type (x = y).

formation rule

We always have refl: x = x.

introduction rule

To define

F:
$$(x y : A) \rightarrow (p : x = y) \rightarrow C(x,y,p)$$
 it suffices to define

 $f': (x : A) \rightarrow C(x, x, refl).$

elimination rule ("J")

Exercise:

```
sym : (x y : A) \rightarrow (x = y) \rightarrow (y = x)
```

Solution:

Using the elimination rule for =, we only need sym': $(x : A) \rightarrow (x = x)$ which is easy.

Exercise:
$$(\rho: x = y)$$
 (x, y, p) $(y = x)$

Solution:

Using the elimination rule for =, we only need sym': $(x : A) \rightarrow (x = x)$ which is easy.

Exercise:

```
trans: (x y z : A) \rightarrow (x = y) \rightarrow (x = z)
```

Solution:

Using the elimination rule for =, we only need trans': $(x z : A) \rightarrow (x = z) \rightarrow (x = z)$ which is easy.

```
Exercise: (x \ y \ z : A) \rightarrow (y = z) \rightarrow (x = z)
```

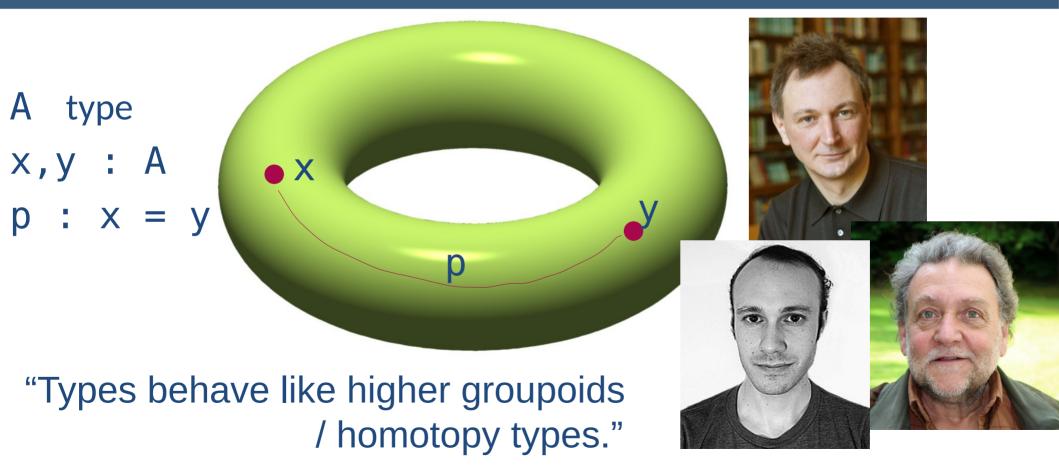
Solution:

Using the elimination rule for =, we only need trans': $(x z : A) \rightarrow (x = z) \rightarrow (x = z)$ which is easy.

Exercise:

$$K : (x : A) \rightarrow (p : x = x) \rightarrow (p = refl)$$

No solution, as shown by Hofmann and Streicher's *Groupoid Model*.



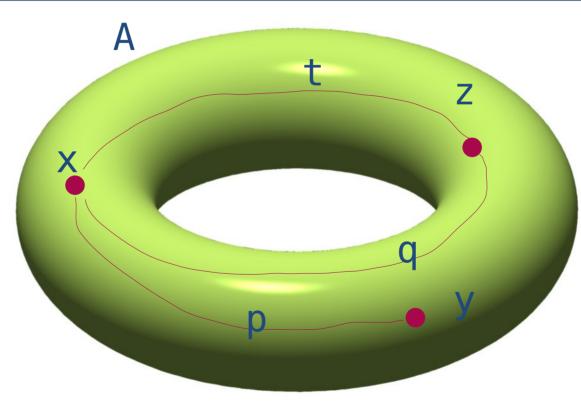
```
type
x, y, z : A
p : x = y
q : x = z
t : x = z
```

A type x,y,z: A

p : x = y

q : x = z

t : x = z



1.
$$p == q$$

2.
$$(y,p) == (z,q)$$

3.
$$q == t$$

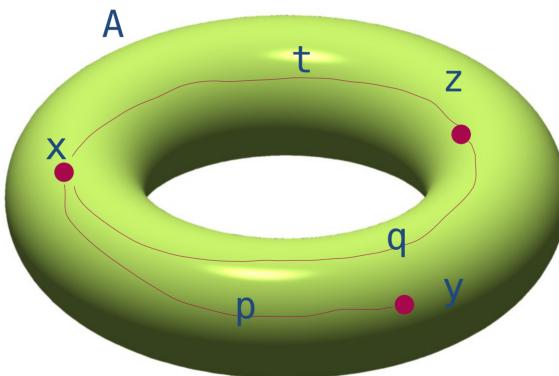
A type

x,y,z: A

p: x = y

q: x = z

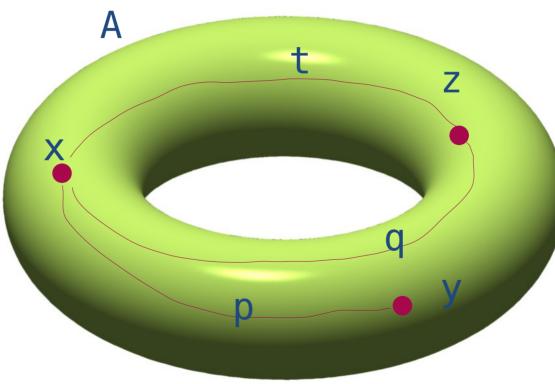
t: x = z



2.
$$(y,p) == (z,q)$$

3.
$$q == t$$

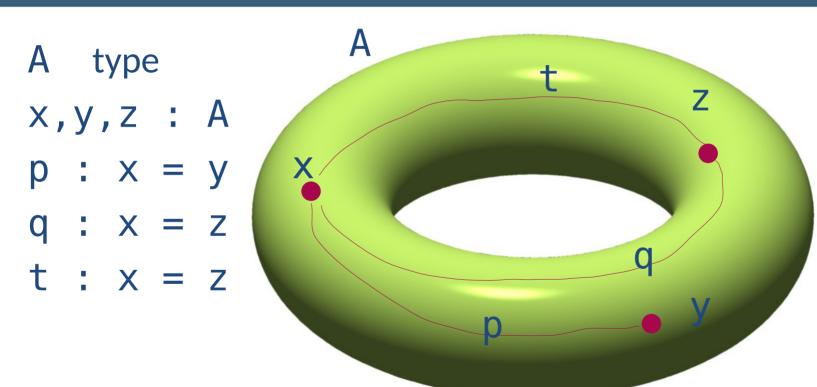
type x, y, z : Ap : x = yq : x = zt : x = z



3.
$$q == t$$

type x, y, z : Ap : x = yq : x = z t : x = z

3.
$$q == t$$
type-checks, but
not provable



Def (Voevodsky): A type X is contractible if $\Sigma(x_0 : X)$. $(y : X) \rightarrow x_0 = y$ is inhabited.

Question: Is the torus (A) contractible?

Application 1: Circle

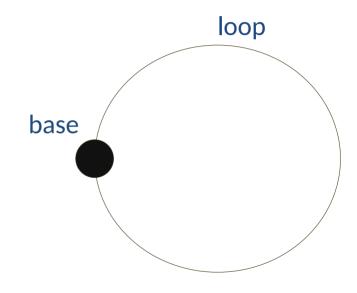
```
data $1 : Type where
  base : $1
  loop : base == base
```

Application 1: Circle

```
data S¹: Type where
```

base: S1

loop : base == base

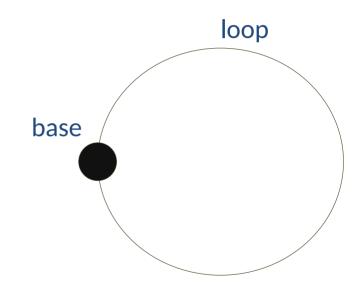


Application 1: Circle

data S¹: Type where

base : S1

loop : base == base



"Synthetic homotopy theory" Example result: $\pi_4(S^3) \simeq \mathbb{Z}/2\mathbb{Z}$ (Brunerie)

Application 2: Groups

```
record cGroup : Type1 where
record aGroup: Type1 where
  field
                                                                        field
    G : Set
    \_\cdot\_ : G \rightarrow G \rightarrow G
                                                                           X: Type
    assoc : \forall \{x \ y \ z\} \rightarrow ((x \cdot y) \cdot z) == (x \cdot (y \cdot z))
                                                                           x : X
                                                                           h: is-1-type X
    e : G
    e-right : \forall \{x\} \rightarrow (x \cdot e) == x
                                                                           c: is-connected X
    e-left : \forall \{x\} \rightarrow (e \cdot x) == x
    inv : G → G
                                                           Given a concrete Group (X,x,h,c),
    inv-left : \forall \{x\} \rightarrow (inv \ x \cdot x) == e
                                                           we can construct an abstract group by setting:
    inv-right: \forall \{x\} \rightarrow (x \cdot inv \ x) == e
                                                               G := (x == x)
                                                                e := refl
                                                                                           (and so on)
                                                                inv := sym
```

"Mathematical DSLs"

Martin-Löf type theory (mechanization of maths, verified programming)

Directed type theories (for directed higher structures)

Homotopy Type Theory (same as MLTT, plus synthetic homotopy theory)

Modal type theory (if modalities are needed)

Cubical Type Theory (better computation, but fewer models than HoTT) Two-level type
theory
(framework for
extensions, study
meta-theory)

(and so on)

"Mathematical DSLs"

Martin-Löf type theory (mechanization of maths, verified programming)

Directed type theories (for directed higher structures)

Homotopy Type Theory (same as MLTT, plus synthetic homotopy theor

Thanks!

Modal type theory (if modalities are needed)

Cubical Type Theory (better computation, but fewer models than HoTT)

Two-level type
theory
(framework for
extensions, study
meta-theory)

(and so on)