
Dependent Type Theory
From propositions and sets to spaces

Nicolai Kraus
BCTCS 2025



Dependent Type Theory

Rocq
/Coq



Types
Examples:     int,   double,   bool 
                   useful for catching mistakes, partial documentation:



Types
Examples:     int,   double,   bool 
                   useful for catching mistakes, partial documentation:



Dependent Types (eg Agda)



Dependent Types (eg Agda)

root of syntax tree 



Primes and twin primes
Consider two exercises in Agda:



Primes and twin primes
Consider two exercises in Agda:

Programming = ProvingAgda type- and termination-checks.
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set {0,1,2,...} 
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an unspecified set
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Syntax
(mostly 
determined 
by the type 
theory)

Semantics
(our choice!)



HoTT: view types as spaces



Martin-Löf’s Identity Type

Given a type A and two terms  x, y : A,
         there is a type (x = y).

We always have   refl : x = x.

To define
  F : (x y : A) → (p : x = y) → C(x,y,p)
it suffices to define
    f’: (x : A) → C(x, x, refl).

formation rule

introduction rule

elimination rule
(“J”)



Examples with =

Exercise:
  sym : (x y : A) → (x = y) → (y = x)

Solution:
  Using the elimination rule for =, we only need
  sym’ : (x : A) → (x = x)
  which is easy.
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Examples with =

Exercise:
  K : (x : A) → (p : x = x) → (p = refl)

No solution, as shown
by Hofmann and Streicher’s
Groupoid Model.



Intuition for =

A    type
x,y : A
p : x = y

“Types behave like higher groupoids 
                            / homotopy types.”

x
y

xxx

p
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Intuition for =
A     type
x,y,z : A
p : x = y
q : x = z
t : x = z

A

xxx

yy

z

p

q

t Def (Voevodsky):
A type X is 
contractible if
Σ(x₀ : X). 
      (y : X) → x₀ = y
is inhabited. 

Question:
Is the torus (A) 
contractible?
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Application 1: Circle
loop

base

“Synthetic homotopy theory”
Example result:  π₄(S³)  /2    (Brunerie)≃ℤ ℤ



Application 2: Groups

Given a concrete Group (X,x,h,c),
we can construct an abstract group by setting: 
     G := (x==x)
      e := refl
      inv := sym                  (and so on)



“Mathematical DSLs”
Martin-Löf type theory
(mechanization of maths,

 verified programming)

Homotopy Type Theory
(same as MLTT, 

plus synthetic homotopy theory)

Directed type theories
(for directed higher 

structures)

Cubical Type Theory
(better computation,

but fewer models than 
HoTT)

Two-level type 
theory

(framework for 
extensions, study 

meta-theory)

(and so on)

Modal type theory
(if modalities are 

needed)
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Thanks!


