Omega Constancy and Truncations

Nicolai Kraus

Functional Programming Lab, University of Nottingham

04/07/14
Consider a type X

... and two points $a, b : X$

\Rightarrow we get a new type $a = b$.

Elements are paths, e.g.
$p : a = b$ or $q : a = b$

\Rightarrow we get a new type
$p = q$, the inhabitants of which are 2-paths.

Definition: if n such iterations always lead to a type that is isomorphic to the unit type, we say that X is an $(n-2)$-type or $(n-2)$-truncated.
Propositional Truncation

The Truncation Monad

\((-1)\)-types are called *propositions*. They have the property that all their inhabitants are equal.

A type theory can have a monad \(\|_\|\) which turns any type into a proposition (which says that this type is inhabited).

Concretely:

- \(\|A\|\) is propositional
- \(A \rightarrow \|A\|\)
- If \(B\) is propositional, then

\[
(A \rightarrow B) \rightarrow (\|A\| \rightarrow B).
\]

(That implies \(\|A\| \rightarrow (A \rightarrow \|B\|) \rightarrow \|B\|\).)
Goal: a function \(\|A\| \rightarrow B \). How do we get it?

If \(B \) is a proposition, then \(f : A \rightarrow B \) is enough. Interpretation:

“\(f(a) \) does not depend on the concrete choice of \(a : A \) because \(B \) does not have distinguishable elements anyway.”

This suggests that \(f \) should be constant (if we want to drop the condition on \(B \)).
But what is “constant”?

First try:

\[
\text{const}_f \equiv \forall (x, y : A). f(x) = f(y)
\]

Indeed, we can prove:

Theorem

\[
(\sum_{f : A \to B} \text{const}_f) \simeq (\|A\| \to B)
\]

if \(B \) is a 0-type.
But look at this:
A function $1 \rightarrow \text{Torus}$ with a proof const_f:

We have to ask for more than that!
Coherence Conditions

The paths have to “fit together”.

Given \(f : A \rightarrow B \) and \(c : \text{const}_f \), define

\[
\text{coh}_{f,c} \equiv \forall (x, y, z : A). \, c(x, y) \cdot c(y, z) = c(x, z)
\]

We can prove:

Theorem

\[
(\sum_{f:A\rightarrow B} \sum_{c:\text{const}_f} \text{coh}_{f,c}) \simeq (\|A\| \rightarrow B)
\]

if \(B \) is a 1-type.
The General Case

- If we do not know anything about B, we need an “infinite Σ-type”.
- This can be done in a theory with certain Reedy-limits.
- Corollary: If B is an n-type, the first n conditions are sufficient.
- This case can be formalised in a proof assistant, for any n.
- Main contribution:

 a generalised universal property of the prop. truncation.

- P. Capriotti and I try to do the same for higher truncation, which requires a very different approach.
Questions?

Thank you!