
Truncation Levels in Homotopy Type
Theory

CSL’16, Marseilles – Ackermann Award talk

Nicolai Kraus

University of Nottingham

31 August 2016



My time as a PhD student

2011-2015

research group:
Functional Programming Lab

advisor:
Thorsten
Altenkirch
Thank you!

I am grateful to many people for
sharing their knowledge with me,
especially Christian Sattler and
Paolo Capriotti



Type theory
Formal systems for programming, proving, formalising,

foundation of mathematics

Central: x ∶ A, “x is a term of type A” (in some context)

→ interpretations:
⋆ A is a set and x an element [Russel, 1903]
⋆ A is a problem and x a solution [Brouwer–Heyting,

Kolmogorov, 1932]
⋆ A is a proposition and x a proof [Curry-Howard, 1969]
⋆ A is a space and x a point (in case of MLTT)

early form: Hofmann–Streicher 1996;
Voevodsky (from 2006/10);
Awodey–Warren 2009; . . .

⇒ Homotopy type theory / Univalent foundations

I have adapted this list from Pelayo-Warren, “Homotopy type theory
and Voevodsky’s univalent foundations”.



Truncation levels (Voevodsky: h-levels)

⋆ Truncation levels express (an upper bound of) the
homotopical complexity of types, starting as follows:

level -2: “contractible”, equivalent to Unit

level -1: “propositional”, contractible equality types

level 0: a “set”, propositional equality types

level 1: a “groupoid”, equality types are sets



Non-truncated types (1)

Well-known fact: In Martin-Löf type theory with the
univalence axiom, the lowest universe U0 is not a set.

Proof: Bool is equivalent to itself in two different ways
(identity and negation), thus univalence gives two
different elements of Bool = Bool.

Open problem of the special year in Princeton (2012):
Given a hierarchy U0 ∶ U1 ∶ U2 ∶ . . . of univalent universes,
can we construct types that are provably not n-truncated?

This is indeed the case (I presented a proof in Princeton in
April 2013).



Non-truncated types (2)

Extended answer (K. and Sattler 2013/2015):

⋆ The universe Un is not n-truncated.
⋆ Un, restricted to n-truncated types, is a “strict”

(n + 1)-type.
⋆ With some additional effort, we get a strict n-type
which has trivial homotopy groups on all levels except
n.

⋆ Note: It is consistent to assume that Un is
(n + 1)-truncated, i.e. the first two results are optimal.
The third “wastes” one universe level.



U1 is not 1-truncated, proof
(0) Assume U1 is 1-truncated.
(1) Set L ∶≡ Σ(X ∶ U0).(X = X).
(2) If U1 is 1-truncated, then L = L is a set.
(3) Then, reflL = reflL is a proposition.
(4) Univalence-translated: (idL, eid) = (idL, eid) is a

proposition.
(5) Simplifies to: idL = idL is a proposition.
(6) By function extensionality: Πx ∶L(x = x) is a proposition.
(7) By unfolding and currying: ΠA∶U0

Πp∶A=A (A, p) = (A, p)
is a proposition.

(8) Rewrite with standard lemmas:
ΠA∶U0

Πp∶A=A Σ(q ∶ A = A).(p q = q p) is a proposition.
(9) . . . but this type has multiple elements, e.g.

λA.λp.(reflA,_) and λA.λp.(p,_).



Un is not n-truncated, some ideas

Recall: Un is n-truncated ↔ Ωn+1(Un, X) is contractible.

⋆ By induction on n.

⋆ Consider (n + 1)-loops in Unn , i.e.:
Σ(A ∶ Unn ).Ωn+1(Unn , A).

Here, Unn is Un restricted to n-truncated types (crucial
trick!).

⋆ We can “move between universes” with our local-global
looping principle:

Ωn+2(U , A) ≃ Πa∶AΩn+1(A, a)
(this is simple, essentially function extensionality).



New topic: Propositional truncation
⋆ In HoTT: we consider an operation ∥−∥ which turns a
type into a propositional type. Roughly: reflector of the
subcategory of propositional types.

⋆ We only know how to construct a function ∥A∥ → B if
B is propositional.

⋆ The (in my opinion) main result of my thesis is:

(∥A∥ → B) ≃ U∆op
+ (TA, EB)

where EB is the Reedy fibrant replacement of (const) B and
TA the [0]-coskeleton of A.

Very much related to 6.2.3.4 in Lurie’s Higher Topos
Theory and 7.8 in Rezk’s Toposes and Homotopy
Toposes.

⋆ I will not talk about this today. Instead, I conclude with
a fun result.



A “mysterious puzzle”
Consider the function ∣−∣ ∶ N → ∥N∥.

There is a term myst such that Πn∶N myst(∣n∣) = n.

⋆ Consequence: 0 = myst(∣0∣) /=myst(∣1∣) = 1 How?

⋆ Solution: the type of myst is not just ∥N∥ → N. In fact,
myst ∶ Πx ∶∥N∥C(x) with a very complicated C. It just
happens that C(∣n∣) ≡ N!

⋆ Here’s how to do it:

Observe that (N, 0) = (N, n) as pointed types. Define

f ∶ N → Σ(Y ∶ U●).((N, 0) = Y )
n ↦ ((N, n),_)

⋆ f ′ ∶ ∥N∥ → Σ(Y ∶ U●).((N, 0) = Y )
⋆ define myst ∶≡ snd ○ fst ○ f ′.



Conclusions

I have done some stuff about truncation levels in type
theory, and I really enjoyed my time as a PhD student.

Thank you!


