Truncation Levels in Homotopy Type Theory
CSL’16, Marseilles – Ackermann Award talk

Nicolai Kraus
University of Nottingham

31 August 2016
My time as a PhD student

2011-2015

research group: Functional Programming Lab

advisor: Thorsten Altenkirch

Thank you!

I am grateful to many people for sharing their knowledge with me, especially Christian Sattler and Paolo Capriotti
Type theory

Formal systems for programming, proving, formalising, foundation of mathematics

Central: $\mathbf{x} : \mathbf{A}$, “\mathbf{x} is a term of type \mathbf{A}” (in some context)

→ interpretations:
☆ \mathbf{A} is a set and \mathbf{x} an element [Russel, 1903]
☆ \mathbf{A} is a problem and \mathbf{x} a solution [Brouwer–Heyting, Kolmogorov, 1932]
☆ \mathbf{A} is a proposition and \mathbf{x} a proof [Curry-Howard, 1969]
☆ \mathbf{A} is a space and \mathbf{x} a point (in case of MLTT)
 early form: Hofmann–Streicher 1996;
 Voevodsky (from 2006/10);

⇒ Homotopy type theory / Univalent foundations

I have adapted this list from Pelayo-Warren, “Homotopy type theory and Voevodsky’s univalent foundations”.
Truncation levels (Voevodsky: h-levels)

* Truncation levels express (an upper bound of) the homotopical complexity of types, starting as follows:

- **level -2**: “contractible”, equivalent to Unit
- **level -1**: “propositional”, contractible equality types
- **level 0**: a “set”, propositional equality types
- **level 1**: a “groupoid”, equality types are sets
Non-truncated types (1)

Well-known fact: In Martin-Löf type theory with the univalence axiom, the lowest universe \mathcal{U}_0 is not a set.

Proof: Bool is equivalent to itself in two different ways (identity and negation), thus univalence gives two different elements of $\text{Bool} = \text{Bool}$.

Open problem of the special year in Princeton (2012):
Given a hierarchy $\mathcal{U}_0 : \mathcal{U}_1 : \mathcal{U}_2 : \ldots$ of univalent universes, can we construct types that are provably not n-truncated?

This is indeed the case (I presented a proof in Princeton in April 2013).
Extended answer (K. and Sattler 2013/2015):

* The universe \mathcal{U}_n is not n-truncated.
* \mathcal{U}_n, restricted to n-truncated types, is a “strict” $(n + 1)$-type.
* With some additional effort, we get a strict n-type which has trivial homotopy groups on all levels except n.
* Note: It is consistent to assume that \mathcal{U}_n is $(n + 1)$-truncated, i.e. the first two results are optimal. The third “wastes” one universe level.
U_1 is not 1-truncated, proof

(0) Assume **U_1** is 1-truncated.
(1) Set \(L \equiv \Sigma(X : \mathcal{U}_0).(X = X)\).
(2) If \(\mathcal{U}_1\) is 1-truncated, then \(L = L\) is a set.
(3) Then, \(\text{refl}_L = \text{refl}_L\) is a proposition.
(4) Univalence-translated: \((\text{id}_L, \text{e}_{\text{id}}) = (\text{id}_L, \text{e}_{\text{id}})\) is a proposition.
(5) Simplifies to: \(\text{id}_L = \text{id}_L\) is a proposition.
(6) By function extensionality: \(\Pi_{x : L}(x = x)\) is a proposition.
(7) By unfolding and currying: \(\Pi_{A : \mathcal{U}_0} \Pi_{p : A = A}(A, p) = (A, p)\) is a proposition.
(8) Rewrite with standard lemmas:
\[\Pi_{A : \mathcal{U}_0} \Pi_{p : A = A} \Sigma(q : A = A).(p \cdot q = q \cdot p)\] is a proposition.
(9) ... but this type has multiple elements, e.g.
\(\lambda A.\lambda p.(\text{refl}_A, _)\) and \(\lambda A.\lambda p.(p, _)\).
\mathcal{U}_n is not n-truncated, some ideas

Recall: \mathcal{U}_n is n-truncated $\iff \Omega^{n+1}(\mathcal{U}_n, X)$ is contractible.

- By induction on n.
- Consider $(n + 1)$-loops in \mathcal{U}_n^n, i.e.:
 \[\Sigma(A : \mathcal{U}_n^n).\Omega^{n+1}(\mathcal{U}_n^n, A). \]
 Here, \mathcal{U}_n^n is \mathcal{U}_n restricted to n-truncated types (crucial trick!).
- We can “move between universes” with our local-global looping principle:
 \[\Omega^{n+2}(\mathcal{U}, A) \simeq \Pi_{a : A} \Omega^{n+1}(A, a) \]
 (this is simple, essentially function extensionality).
New topic: Propositional truncation

* In HoTT: we consider an operation $\| - \|$ which turns a type into a propositional type. Roughly: reflector of the subcategory of propositional types.

* We only know how to construct a function $\|A\| \to B$ if B is propositional.

* The (in my opinion) main result of my thesis is:

$$ (\|A\| \to B) \simeq \mathcal{U}^{\Delta^+}_{\mathcal{C}}(\mathcal{T}A, \mathcal{E}B) $$

where $\mathcal{E}B$ is the Reedy fibrant replacement of $(\text{const}) B$ and $\mathcal{T}A$ the $[0]$-coskeleton of A.

Very much related to 6.2.3.4 in Lurie’s *Higher Topos Theory* and 7.8 in Rezk’s *Toposes and Homotopy Toposes*.

* I will not talk about this today. Instead, I conclude with a fun result.
A “mysterious puzzle”

Consider the function $|_| : \mathbb{N} \to \|\mathbb{N}\|$. There is a term myst such that $\prod_{n:\mathbb{N}} \text{myst}(|n|) = n$.

- Consequence: $0 = \text{myst}(|0|) \neq \text{myst}(|1|) = 1$ How?

- Solution: the type of myst is **not** just $\|\mathbb{N}\| \to \mathbb{N}$. In fact, $\text{myst} : \prod_{x:\|\mathbb{N}\|} C(x)$ with a **very** complicated C. It just happens that $C(|n|) \equiv \mathbb{N}$!

- Here’s how to do it:
 Observe that $(\mathbb{N}, 0) = (\mathbb{N}, n)$ as pointed types. Define $f : \mathbb{N} \to \Sigma(Y : U.)((\mathbb{N}, 0) = Y)$

 $n \mapsto ((\mathbb{N}, n), _)$

- $f' : \|\mathbb{N}\| \to \Sigma(Y : U.)((\mathbb{N}, 0) = Y)$

- define $\text{myst} :\equiv \text{snd} \circ \text{fst} \circ f'$.
Conclusions

I have done some stuff about truncation levels in type theory, and I really enjoyed my time as a PhD student.

Thank you!