Truncation Levels in Homotopy Type

Theory
CSL'16, Marseilles — Ackermann Award talk

Nicolai Kraus

University of Nottingham

31 August 2016

My time as a PhD student

Iy

Nottingham 2011-2015

research group:
Functional Programming Lab

advisor:

i Thorsten
" Altenkirch
| Thank you!

| am grateful to many people for
sharing their knowledge with me,
especially Christian Sattler and
Paolo Capriotti

Type theory

Formal systems for programming, proving, formalising,
foundation of mathematics J

Central: x: A, “x is a term of type A" (in some context) |

— interpretations:

* Ais a set and x an element [Russel, 1903]

* Ais a problem and x a solution [Brouwer—Heyting,
Kolmogorov, 1932]

* Ais a proposition and x a proof [Curry-Howard, 1969]

* Ais a space and x a point (in case of MLTT)
early form: Hofmann—Streicher 1996;
Voevodsky (from 2006/10);
Awodey—Warren 2009; ...

= Homotopy type theory / Univalent foundations

| have adapted this list from Pelayo-Warren, “Homotopy type theory
and Voevodsky's univalent foundations”.

Truncation levels (Voevodsky: h-levels)

* Truncation levels express (an upper bound of) the
homotopical complexity of types, starting as follows:

‘ level -2: “contractible”, equivalent to Unit

level -1: “propositional”, contractible equality types

level O: a “set”, propositional equality types

Q‘ level 1: a “groupoid”, equality types are sets

Non-truncated types (1)

Well-known fact: In Martin-Lof type theory with the
univalence axiom, the lowest universe Uy Is not a set.

Proof: Bool is equivalent to itself in two different ways
(identity and negation), thus univalence gives two
different elements of Bool = Bool.

Open problem of the special year in Princeton (2012):
Given a hierarchy Uy : Uy : U : ... of univalent universes,
can we construct types that are provably not n-truncated?

This is indeed the case (I presented a proof in Princeton in
April 2013).

Non-truncated types (2)

Extended answer (K. and Sattler 2013/2015):

*= The universe U, is not n-truncated.

* U,, restricted to n-truncated types, is a “strict”
(n+1)-type.
= With some additional effort, we get a strict n-type

which has trivial homotopy groups on all levels except
n.

*x Note: It is consistent to assume that U, is
(n+ 1)-truncated, i.e. the first two results are optimal.
The third “wastes” one universe level.

U7 I1s not 1-truncated, proof

(0) Assume Uy is 1-truncated.

(1) Set L = S(X :Up).(X = X).

(2) If Uy is 1-truncated, then L = L is a set.

(3) Then, refl, = refl, is a proposition.

(4) Univalence-translated: (id.,ejq) = (id.,eq) is a
proposition.

(5) Simplifies to: id; =id; is a proposition.

(6) By function extensionality: IM,.. (x = x) is a proposition.

(7) By unfolding and currying: Mag,Mpa-a (A, p) = (A, p)
IS a proposition.

(8) Rewrite with standard lemmas:
NaziMpa-a 2(q: A= A).(p~q = q-p) is a proposition.

(9) ...but this type has multiple elements, e.g.
AAXD.(refla,) and XA Xp.(p,).

U, is not n-truncated, some ideas
Recall: U, is n-truncated <« Q"(U,, X) is contractible.

= By induction on n.

» Consider (n+ 1)-loops in U, i.e.:
Y(A:UN.Q™N UL A).

Here, U, is U, restricted to n-truncated types (crucial
trick!).
= We can “move between universes” with our /ocal-global
looping principle:
Q™2(U, A) = MaQ" (A, a)
(this is simple, essentially function extensionality).

New topic: Propositional truncation

* In HoTT: we consider an operation |-|| which turns a
type into a propositional type. Roughly: reflector of the
subcategory of propositional types.

* We only know how to construct a function |A| — B if
B is propositional.

* The (in my opinion) main result of my thesis is:
(JAl = B) =~ U"(TA €B)

where EB is the Reedy fibrant replacement of (const) B and
7A the [0]-coskeleton of A.

Very much related to 6.2.3.4 in Lurie's Higher Topos
Theory and 7.8 in Rezk's Toposes and Homotopy
Toposes.

* | will not talk about this today. Instead, | conclude with
a fun result.

A “mysterious puzzle”

Consider the function |-| : N - |N]|.
There is a term myst such that IM,5 myst(|n|) = n.

» Consequence: 0 = myst(|0]) # myst(|1]) = 1 How?

* Solution: the type of myst is not just ||[N| - N. In fact,
myst : My C(x) with a very complicated C. It just
happens that C(|n|) = N!

* Here's how to do it:

Observe that (N, 0) = (N, n) as pointed types. Define
f:N->X(Y:U)(NO0)=Y)
n~((N,n),_)
* N - Z(Y :U,).((N,0) =Y)

* define myst := snd o fsto f'.

Conclusions

| have done some stuff about truncation levels in type
theory, and | really enjoyed my time as a PhD student.

Thank youl!

