Two-Level Type Theory

Nicolai Kraus

12 March 2025, 9th Southern and Midlands Logic Seminar, Birmingham

Field: MLTT-style type theories

Two-Level Type Theory (2LTT)

Two-Level Type Theory (2LTT)

what: HoTT, with the ability to reason about judgmental equalitieswhy: We want an internal theory of higher categories, via semisimplicial types

what: HoTT, with the ability to reason about judgmental equalitieswhy: We want an internal theory of higher categories, via semisimplicial types

...ok, better explanation: something doesn't type-check, but we want it to type-check!

refl : 2 + 1 = 1 + 2

refl : 5 + 1 = 1 + 5

refl : 843 + 1 = 1 + 843

what: HoTT, with the ability to reason about judgmental equalities why: We want an internal theory of higher categories, via semisimplicial types

...ok, better explanation: something doesn't type-check, but we want it to type-check!

refl: 2 + 1 = 1 + 2 refl: $\{n : Nat\} \rightarrow n + 1 = 1 + n$

refl : 5 + 1 = 1 + 5

refl : 843 + 1 = 1 + 843

what: HoTT, with the ability to reason about judgmental equalitieswhy: We want an internal theory of higher categories, via semisimplicial types

...ok, better explanation: something doesn't type-check, but we want it to type-check!

refl : 2 + 1 = 1 + 2

refl : 5 + 1 = 1 + 5

refl : 843 + 1 = 1 + 843

Early instance of 2LTT: **Voevodsky's HTS (Homotopy Type System), 2013** Motivation: "Semisimplicial types" Problem: construct a type of Reedy fibrant contravariant functors $\Delta_+ \rightarrow$ Type

A₀ : Type A₁ : A₀ \rightarrow A₀ \rightarrow Type A₂ : (x y z : A₀) \rightarrow A₁ x y \rightarrow A₁ x z \rightarrow A₁ y z \rightarrow Type A₃ : ...

Goal: Write down a function $S : \mathbb{N} \to Type_1$ such that $S(n) \simeq$ type of the tuple $(A_0, A_1, A_2, ..., A_n)$.

We can only write down an expression S(x) such that S(n) is correct for *external* n.

HTS: HoTT extended with:

- "external/strict natural numbers" type
- "external/strict equality"
- ... and the infrastructure to make this work

Axiom of HTS: $\mathbb{N}^{s} \equiv \mathbb{N}$ (justified by sSet model) => Problem solved.

Capriotti's insight: Without such axioms, we get conservativity. More than an analogy: yoneda : $C \rightarrow [C^{\circ P}, Set]$

Any type theory extends to a two-level type theory.

Details: Annenkov-Capriotti-Kraus-Sattler, Two-level type theory and applications.

Definition of general 2LTT

An instance of two-level type theory consists of:

- * a category **Con** of *contexts*;
- * **Ty**ⁱ and **Tm**ⁱ such that (Con, Tyⁱ, Tmⁱ) forms a cwf

(the "inner/fibrant level")

- * **Ty**^s and **Tm**^s such that (Con, Ty^s, Tm^s) forms a cwf
 - (the "outer/strict/exo level")
- * a conversion morphism **c** from the inner to the outer theory,
 - s.t.: **c** is the identity on contexts
 - c preserves context extension

(but not necessarily type formers!)

A type theory that has lots of type formers:

 Π , Σ , 1, 0, +, =, \mathbb{N} , higher inductive types, univalent universes

 $\Pi, \Sigma, 1, 0, +, =, \mathbb{N}$, inductive types, universes, equality reflection (or UIP & funext)

A type theory that has lots of type formers:

 Π , Σ , 1, 0, +, =, \mathbb{N} , higher inductive types, univalent universes |, |, |, |, Π , Σ , 1, 0, +, =, \mathbb{N} , inductive types, universes, equality reflection (or UIP & funext)

Useful special case of 2LTT HoTT extensional MLTT / MLTT + UIP + funext Eibrant types: $\Pi = \Sigma = 1 = 0$ HITs univalent universes

Fibrant types: Π , Σ , 1, 0, +, =, \mathbb{N} , HITs, univalent universes; Strict types: 0° , $+^{\circ}$, $=^{\circ}$, \mathbb{N}° , strict universes.

Rules: = only works for fibrant types, =^s works for everything. Induction principles of fibrant types can only eliminate into fibrant types.

Example: $x = {}^{s} y \rightarrow x = y$ but not vice versa. $\mathbb{N}^{s} \rightarrow \mathbb{N}$ but not vice versa. $A + {}^{s} B \rightarrow A + B$ but not vice versa.

Useful special case of 2LTT HoTT extensional MLTT / MLTT + UIP + funext

Fibrant types: Π , Σ , 1, 0, +, =, \mathbb{N} , HITs, univalent universes; Strict types: 0° , $+^{\circ}$, $=^{\circ}$, \mathbb{N}° , strict universes.

Voevodsky's HTS is the special case with the assumptions $\mathbb{N}^{s} \equiv \mathbb{N}$, $0^{s} \equiv 0$, $+^{s} \equiv +$.

Example model

Simplicial sets (sSet):

- * Every simplicial set is a context.
- * inner/fibrant level: Kan fibrations (cf Kapulkin-Lumsdaine).
- * outer/strict level: usual presheaf model.

Applications

- * Language to formulate new axioms e.g. HTS.
- * Formalise meta-theoretic statements
 - e.g. Shulman's Reedy fibrant inverse diagrams,
 - e.g. "HoTT can define semisimplicial types up to any externally fixed n".
- * "Template programming"
 - e.g. for any strict number n, we can develop a theory of univalent n-categories; plug in 1, 2, 3, ... to get developments in HoTT.
- * Staged Compilation with Two-Level Type Theory (ICFP paper by András Kovács).
- * (conjectural:) factoring a structural extension $T_1 \rightarrow T_2$ as $T_1 \rightarrow 2LTT \rightarrow T_2$, where the second step is an axiomatic extension; use Agda's --two-level flag to work in T_2 .

Applications

- * Language to formulate new axioms e.g. HTS.
- * Formalise meta-theoretic statements
 - e.g. Shulman's Reedy fibrant inverse diagrams,
 - e.g. "HoTT can define semisimplicial types up to any externally fixed n".
- * "Template programming"
 - e.g. for any strict number n, we can develop a theory of univalent n-categories; plug in 1, 2, 3, ... to get developments in HoTT.
- * Staged Compilation with Two-Level Type Theory (ICFP paper by András Kovács).
- * (conjectural:) factoring a structural extension $T_1 \rightarrow T_2$ as $T_1 \rightarrow 2LTT \rightarrow T_2$, where the second step is an axiomatic extension; use Agda's --two-level flag to work in T_2 .

Thanks for your attention!