
Two-Level Type Theory

Nicolai Kraus

12 March 2025,
9th Southern and Midlands Logic Seminar,

Birmingham

Coq/Rocq

Field: MLTT-style type theories

“A type theory sitting in
another type theory”

 another
type theory

 some
type theory

Two-Level Type Theory (2LTT)

“A type theory sitting in
another type theory”

 another
type theory

 some
type theory

… ok, but why?

Two-Level Type Theory (2LTT)

Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013
what: HoTT, with the ability to reason about judgmental equalities
why: We want an internal theory of higher categories, via
 semisimplicial types

Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013
what: HoTT, with the ability to reason about judgmental equalities
why: We want an internal theory of higher categories, via
 semisimplicial types

refl : 2 + 1 = 1 + 2

…ok, better explanation:
 something doesn’t type-check, but we want it to type-check!

refl : 5 + 1 = 1 + 5

refl : 843 + 1 = 1 + 843

Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013
what: HoTT, with the ability to reason about judgmental equalities
why: We want an internal theory of higher categories, via
 semisimplicial types

refl : 2 + 1 = 1 + 2

…ok, better explanation:
 something doesn’t type-check, but we want it to type-check!

refl : 5 + 1 = 1 + 5

refl : 843 + 1 = 1 + 843

refl : {n : Nat} → n + 1 = 1 + n

Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013
what: HoTT, with the ability to reason about judgmental equalities
why: We want an internal theory of higher categories, via
 semisimplicial types

refl : 2 + 1 = 1 + 2

…ok, better explanation:
 something doesn’t type-check, but we want it to type-check!

refl : 5 + 1 = 1 + 5

refl : 843 + 1 = 1 + 843

refl : {n : Nat} → n + 1 = 1 + n

What if:

Construction judgemental
equality

makes possible

implies

Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013

Motivation: “Semisimplicial types”
Problem: construct a type of Reedy fibrant
 contravariant functors Δ₊ → Type

A₀ : Type
A₁ : A₀ → A₀ → Type
A₂ : (x y z : A₀) → A₁ x y → A₁ x z → A₁ y z → Type
A₃ : ...

Goal: Write down a function S : → Type₁ℕ
 such that S(n) type of the tuple (A₀, A₁, A₂, ..., A). ≃ ₙ
We can only write down an expression S(x) such that S(n) is correct for external n.

Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013

Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013

HTS: HoTT extended with:
 - “external/strict natural numbers” type
 - “external/strict equality”
 - … and the infrastructure to make this work

MLTT/HoTT ℕˢ
 x =ˢ y
 ...

Axiom of HTS:
ℕˢ ≡ ℕ

(justified by sSet model)

=> Problem solved.

Capriotti’s insight:
 Without such axioms, we get conservativity.

More than an analogy:
 yoneda : C → [Cᵒᵖ , Set]

Any type theory extends to a two-level type theory.
Details: Annenkov-Capriotti-Kraus-Sattler, Two-level type theory and applications.

extension

Definition of general 2LTT
An instance of two-level type theory consists of:
 * a category Con of contexts;
 * Tyⁱ and Tmⁱ such that (Con, Tyⁱ, Tmⁱ) forms a cwf
 (the “inner/fibrant level”)
 * Tyˢ and Tmˢ such that (Con, Tyˢ, Tmˢ) forms a cwf
 (the “outer/strict/exo level”)
 * a conversion morphism c from the inner to the outer theory,
 s.t.: - c is the identity on contexts
 - c preserves context extension
 (but not necessarily type formers!)

Useful special case of 2LTT

HoTT extensional MLTT /
MLTT + UIP + funext

A type theory that has lots of type formers:

Π , Σ , 1 , 0 , + , = , , higher inductive types , univalent universesℕ

Π , Σ , 1 , 0 , + , = , , inductive types , universes , equality reflectionℕ
 (or UIP & funext)

Useful special case of 2LTT

HoTT extensional MLTT /
MLTT + UIP + funext

A type theory that has lots of type formers:

Π , Σ , 1 , 0 , + , = , , higher inductive types , univalent universesℕ

Π , Σ , 1 , 0 , + , = , , inductive types , universes , equality reflectionℕ
 (or UIP & funext)

Useful special case of 2LTT

HoTT extensional MLTT /
MLTT + UIP + funext

Fibrant types: Π , Σ , 1 , 0 , + , = , , HITs , univalent universes;ℕ
Strict types: 0ˢ, +ˢ, =ˢ, ˢ, strict universes.ℕ

Rules: = only works for fibrant types, =ˢ works for everything.
 Induction principles of fibrant types can only eliminate into fibrant types.

 Example: x =ˢ y → x = y but not vice versa.
 ℕˢ → but not vice versa.ℕ
 A +ˢ B → A + B but not vice versa.

Useful special case of 2LTT

HoTT extensional MLTT /
MLTT + UIP + funext

Fibrant types: Π , Σ , 1 , 0 , + , = , , HITs , univalent universes;ℕ
Strict types: 0ˢ, +ˢ, =ˢ, ˢ, strict universes.ℕ

Voevodsky’s HTS is the special case with the assumptions ˢ ≡ , 0ˢ ≡ 0 , +ˢ ℕ ℕ ≡ +.

Example model

Simplicial sets (sSet):
 * Every simplicial set is a context.
 * inner/fibrant level: Kan fibrations (cf Kapulkin-Lumsdaine).
 * outer/strict level: usual presheaf model.

Applications
* Language to formulate new axioms

e.g. HTS.
* Formalise meta-theoretic statements

e.g. Shulman’s Reedy fibrant inverse diagrams,
e.g. “HoTT can define semisimplicial types up to any externally fixed n”.

* “Template programming”
e.g. for any strict number n, we can develop a theory of univalent n-categories;
 plug in 1, 2, 3, … to get developments in HoTT.

* Staged Compilation with Two-Level Type Theory (ICFP paper by András Kovács).
* (conjectural:) factoring a structural extension T₁ → T₂ as T₁ → 2LTT → T₂, where
 the second step is an axiomatic extension;
 use Agda's --two-level flag to work in T₂.

Applications
* Language to formulate new axioms

e.g. HTS.
* Formalise meta-theoretic statements

e.g. Shulman’s Reedy fibrant inverse diagrams,
e.g. “HoTT can define semisimplicial types up to any externally fixed n”.

* “Template programming”
e.g. for any strict number n, we can develop a theory of univalent n-categories;
 plug in 1, 2, 3, … to get developments in HoTT.

* Staged Compilation with Two-Level Type Theory (ICFP paper by András Kovács).
* (conjectural:) factoring a structural extension T₁ → T₂ as T₁ → 2LTT → T₂, where
 the second step is an axiomatic extension;
 use Agda's --two-level flag to work in T₂.

Thanks for your attention!

