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Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013
what:  HoTT, with the ability to reason about judgmental equalities
why:    We want an internal theory of higher categories, via
             semisimplicial types
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Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013

Motivation: “Semisimplicial types”
Problem: construct a type of Reedy fibrant
                 contravariant functors   Δ₊ → Type

A₀ : Type
A₁ : A₀ → A₀ → Type
A₂ : (x y z : A₀) → A₁ x y → A₁ x z → A₁ y z → Type
A₃ : ...

Goal: Write down a function S :  → Type₁ℕ
           such that S(n)   type of the tuple (A₀, A₁, A₂, ..., A ). ≃ ₙ
We can only write down an expression S(x) such that S(n) is correct for external n.



Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013



Early instance of 2LTT:
 Voevodsky’s HTS (Homotopy Type System), 2013

HTS: HoTT extended with:
   - “external/strict natural numbers” type
   - “external/strict equality”
   - … and the infrastructure to make this work

MLTT/HoTT ℕˢ      
            x =ˢ y
   ...

Axiom of HTS:
ℕˢ ≡ ℕ

(justified by sSet model)

=> Problem solved.



Capriotti’s insight:
    Without such axioms, we get conservativity.

More than an analogy:
    yoneda :   C  →  [Cᵒᵖ , Set]

Any type theory extends to a two-level type theory.
Details: Annenkov-Capriotti-Kraus-Sattler, Two-level type theory and applications.

extension



Definition of general 2LTT 
An instance of two-level type theory consists of:
  * a category Con of contexts;
  * Tyⁱ and Tmⁱ such that (Con, Tyⁱ, Tmⁱ) forms a cwf
                                                               (the “inner/fibrant level”)
  * Tyˢ and Tmˢ such that (Con, Tyˢ, Tmˢ) forms a cwf
                                                               (the “outer/strict/exo level”) 
  * a conversion morphism c from the inner to the outer theory,
     s.t.:  - c is the identity on contexts
              - c preserves context extension
                   (but not necessarily type formers!)



Useful special case of 2LTT 

HoTT extensional MLTT / 
MLTT + UIP + funext

A type theory that has lots of type formers:

Π , Σ , 1 , 0 , + , = ,  , higher inductive types , univalent universesℕ

Π , Σ , 1 , 0 , + , = ,  , inductive types , universes , equality reflectionℕ
                       (or UIP & funext)
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Useful special case of 2LTT 

HoTT extensional MLTT / 
MLTT + UIP + funext

Fibrant types:   Π , Σ , 1 , 0 , + , = ,  , HITs , univalent universes;ℕ
Strict types:                       0ˢ, +ˢ, =ˢ, ˢ, strict universes.ℕ

Rules:   = only works for fibrant types, =ˢ works for everything.
             Induction principles of fibrant types can only eliminate into fibrant types.

             Example:  x =ˢ y  →  x = y    but not vice versa.
                              ℕˢ →                 but not vice versa.ℕ
                              A +ˢ B  →  A + B   but not vice versa.



Useful special case of 2LTT 

HoTT extensional MLTT / 
MLTT + UIP + funext

Fibrant types:   Π , Σ , 1 , 0 , + , = ,  , HITs , univalent universes;ℕ
Strict types:                       0ˢ, +ˢ, =ˢ, ˢ, strict universes.ℕ

Voevodsky’s HTS is the special case with the assumptions ˢ ≡  , 0ˢ ≡ 0 , +ˢ ℕ ℕ ≡ +.



Example model 

Simplicial sets (sSet):
  * Every simplicial set is a context.
  * inner/fibrant level: Kan fibrations (cf Kapulkin-Lumsdaine).
  * outer/strict level: usual presheaf model.



Applications 
* Language to formulate new axioms

e.g. HTS.
* Formalise meta-theoretic statements

e.g. Shulman’s Reedy fibrant inverse diagrams,
e.g. “HoTT can define semisimplicial types up to any externally fixed n”.

* “Template programming”
e.g. for any strict number n, we can develop a theory of univalent n-categories;
       plug in 1, 2, 3, … to get developments in HoTT.

* Staged Compilation with Two-Level Type Theory (ICFP paper by András Kovács).
* (conjectural:) factoring a structural extension T₁ → T₂ as T₁ → 2LTT → T₂, where
                        the second step is an axiomatic extension; 
                        use Agda's --two-level flag to work in T₂.
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Thanks for your attention!


