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What are ordinal numbers?

introduced by
Cantor, 1870s

▶ They generalize N: 0, 1, 2, . . . , ω, ω+1, ω+2, . . . , ωω, . . .
▶ Key property: Every decreasing sequence terminates.
▶ Applications: prove termination of processes, show consistency

of logical theories, justify induction and recursion principles, . . .

Alice
Supplier

Bob
Customer

When can you deliver?
20 days, at most!

next day:
How long?

19 days
. . . . . . . . .

How long?
0 days – completed!
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Our goal: constructive ordinal theory
▶ We want a constructive version of the theory of ordinals.
▶ Classically, ordinals have many different representations;

but constructively, the notions split apart:

more semanticmore syntactic

We are here.

▶ For us, an ordinal is a set α with a relation < which is transitive, extensional,
wellfounded.
This notion was previously suggested by Grayson (1978, 1982) and was studied in
the HoTT book (2013) as well as by Escardó (2020s).
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We want arithmetic
▶ Classically, arithmetic operations are usually defined by inspecting whether the

exponent is zero, a successor, or a limit ordinal.
▶ For example, addition:

α + 0 := α

α + (β + 1) := (α + β) + 1
α + λ := sup

β<λ
(α + β) (if λ is a limit)

▶ Such a case distinction is not possible when working constructively, so this is not
a definition — but it can still serve as a specification.

▶ There is an easy and well-known constructive solution: α + β := α ⊎ β (the
disjoint union), with everything from α being below everything from β.

6/12



We want arithmetic
▶ Classically, arithmetic operations are usually defined by inspecting whether the

exponent is zero, a successor, or a limit ordinal.
▶ For example, addition:

α + 0 := α

α + (β + 1) := (α + β) + 1
α + λ := sup

β<λ
(α + β) (if λ is a limit)

▶ Such a case distinction is not possible when working constructively, so this is not
a definition — but it can still serve as a specification.

▶ There is an easy and well-known constructive solution: α + β := α ⊎ β (the
disjoint union), with everything from α being below everything from β.

6/12



The problem with exponentiation
▶ Classically:

α0 = 1 0β = 0 (if β ̸= 0)
αβ+1 = αβ × α αλ = sup

β<λ
αβ (if λ is a limit, α ̸= 0)

▶ No easy constructive solution; in fact:
Thm. (Imprecise) There is a well behaved exponentiation function on all ordinals
if and only if excluded middle holds.

▶ Exponentiation is unintuitive, e.g.

2ω = 2sup(0,1,2,...) = sup(20, 21, 22, . . .) = ω

▶ In particular, exponentiation is not given by function spaces.
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Our work – the highlights

▶ Working constructively in homotopy type theory, we construct two well behaved
ordinal exponentiation functions α(−) with a minor condition on the base α:

▶ The first construction is abstract, uses suprema of ordinals, and is motivated by
the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.
It is well defined whenever α has a trichotomous least element: the least element
a⊥ ∈ α is further required to satisfy: ∀(x ∈ α). (a⊥ < x) ∨ (a⊥ = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).
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Commercial break
▶ A link to our paper is in the programme.

▶ All of its results are formalized in the proof assistant Agda, based on Martín
Escardó’s library TypeTopology. Clicking a 2 next to a definition, lemma,
theorem, etc. in the paper takes you to its formalization.

9/12
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First solution: abstract exponentiation

▶ Our no-go theorem says that we cannot define αβ for arbitrary α, β. Let’s assume
α ≥ 1. We can shorten the specification to:

αβ+1 = αβ × α αsupi∈I Fi = 1 ∨ sup
i∈I

(αFi )

▶ If β is an ordinal and b0 ∈ β, then the initial segment β ↓b0 is an ordinal:

β ↓b0 := {b ∈ β | b < b0}

▶ Lemma. For every ordinal β we have β = supb0∈β(β ↓b0 + 1).
▶ Idea: If we had αβ, then

αβ = αsupb:β (β↓b + 1) = 1 ∨ sup
b:β

αβ↓b + 1 = 1 ∨ sup
b:β

(
αβ↓b × α

)
.

⇒ We take this as a definition (called abstract exponentiation).
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Second solution: concrete exponentiation
▶ Sierpiński (1958):

αβ := {f : α → β | f has finite support (i.e. is almost everywhere 0)}

▶ Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs. The least element a⊥ ∈ α should not be an
output, so we consider

α>⊥ := {a ∈ α | a > a⊥}

and define concrete exponentiation exp(α, β) as the set of lists on α>⊥ × β that
are decreasing in the β-component:

exp(α, β) := {[(a1, b1), (a2, b2), . . . , (ak , bk)] | ai ∈ α>⊥, bi ∈ β, b1 > b2 > . . . > bk}

▶ We require a trichotomous least element a⊥, i.e. a⊥ satisfies
∀x ∈ α. (a⊥ < x) ∨ (a⊥ = x), to ensure that α>⊥ is an ordinal.
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The whole is greater than the sum of its parts

▶ Thm. Concrete and abstract exponentiation coincide (as long as a⊥ is
trichotomous).
⇒ We get the best of both worlds.

▶ For example, for the abstract exponentiation, it is easy to show:

αβ+γ = αβ × αγ and αβ×γ =
(
αβ

)γ
.

▶ For concrete exponentiation, it is immediate that decidability properties are
preserved.

▶ In HoTT, univalence (“representation independence”) makes precise the idea that
we can always choose the representation we want.

Thanks for your attention!
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