
Ordinal Exponentiation in Homotopy Type Theory

Tom de Jong1 Nicolai Kraus1 Fredrik Nordvall Forsberg2 Chuangjie Xu

1University of Nottingham, UK
2University of Strathclyde, UK

Logic in Computer Science

24 June 2025



Constructive Ordinal Exponentiation in Homotopy Type Theory

Tom de Jong1 Nicolai Kraus1 Fredrik Nordvall Forsberg2 Chuangjie Xu

1University of Nottingham, UK
2University of Strathclyde, UK

Logic in Computer Science

24 June 2025



What are ordinal numbers?

introduced by
Cantor, 1870s

▶ They generalize N: 0, 1, 2, . . . , ω, ω+1, ω+2, . . . , ωω, . . .
▶ Key property: Every decreasing sequence terminates.
▶ Applications: prove termination of processes, show consistency

of logical theories, justify induction and recursion principles, . . .

Alice
Supplier

Bob
Customer

When can you deliver?
20 days, at most!

next day:
How long?

19 days
. . . . . . . . .

How long?
0 days – completed!

3/12



What are ordinal numbers?

introduced by
Cantor, 1870s

▶ They generalize N: 0, 1, 2, . . . , ω, ω+1, ω+2, . . . , ωω, . . .
▶ Key property: Every decreasing sequence terminates.
▶ Applications: prove termination of processes, show consistency

of logical theories, justify induction and recursion principles, . . .

Alice
Supplier

Bob
Customer

When can you deliver?
20 days, at most!

next day:
How long?

19 days
. . . . . . . . .

How long?
0 days – completed!

3/12



What are ordinal numbers?

introduced by
Cantor, 1870s

▶ They generalize N: 0, 1, 2, . . . , ω, ω+1, ω+2, . . . , ωω, . . .
▶ Key property: Every decreasing sequence terminates.
▶ Applications: prove termination of processes, show consistency

of logical theories, justify induction and recursion principles, . . .

Alice
Supplier

Bob
Customer

When can you deliver?
ω + 1 days!

next day:
How long?

ω days.

next day:

How long?
7242 days.

WHAT??

4/12



What are ordinal numbers?

introduced by
Cantor, 1870s

▶ They generalize N: 0, 1, 2, . . . , ω, ω+1, ω+2, . . . , ωω, . . .
▶ Key property: Every decreasing sequence terminates.
▶ Applications: prove termination of processes, show consistency

of logical theories, justify induction and recursion principles, . . .

Alice
Supplier

Bob
Customer

When can you deliver?
ω + 1 days!

next day:
How long?

ω days.

next day:

How long?
7242 days.

WHAT??

4/12



What are ordinal numbers?

introduced by
Cantor, 1870s

▶ They generalize N: 0, 1, 2, . . . , ω, ω+1, ω+2, . . . , ωω, . . .
▶ Key property: Every decreasing sequence terminates.
▶ Applications: prove termination of processes, show consistency

of logical theories, justify induction and recursion principles, . . .

Alice
Supplier

Bob
Customer

When can you deliver?
ω + 1 days!

next day:
How long?

ω days.

next day:

How long?
7242 days.

WHAT??
4/12



Our goal: constructive ordinal theory
▶ We want a constructive version of the theory of ordinals.
▶ Classically, ordinals have many different representations;

but constructively, the notions split apart:

more semanticmore syntactic

We are here.

▶ For us, an ordinal is a set α with a relation < which is transitive, extensional,
wellfounded.
This notion was previously suggested by Grayson (1978, 1982) and was studied in
the HoTT book (2013) as well as by Escardó (2020s).

5/12



We want arithmetic
▶ Classically, arithmetic operations are usually defined by inspecting whether the

exponent is zero, a successor, or a limit ordinal.
▶ For example, addition:

α + 0 := α

α + (β + 1) := (α + β) + 1
α + λ := sup

β<λ
(α + β) (if λ is a limit)

▶ Such a case distinction is not possible when working constructively, so this is not
a definition — but it can still serve as a specification.

▶ There is an easy and well-known constructive solution: α + β := α ⊎ β (the
disjoint union), with everything from α being below everything from β.

6/12



We want arithmetic
▶ Classically, arithmetic operations are usually defined by inspecting whether the

exponent is zero, a successor, or a limit ordinal.
▶ For example, addition:

α + 0 := α

α + (β + 1) := (α + β) + 1
α + λ := sup

β<λ
(α + β) (if λ is a limit)

▶ Such a case distinction is not possible when working constructively, so this is not
a definition — but it can still serve as a specification.

▶ There is an easy and well-known constructive solution: α + β := α ⊎ β (the
disjoint union), with everything from α being below everything from β.

6/12



The problem with exponentiation
▶ Classically:

α0 = 1 0β = 0 (if β ̸= 0)
αβ+1 = αβ × α αλ = sup

β<λ
αβ (if λ is a limit, α ̸= 0)

▶ No easy constructive solution; in fact:
Thm. (Imprecise) There is a well behaved exponentiation function on all ordinals
if and only if excluded middle holds.

▶ Exponentiation is unintuitive, e.g.

2ω = 2sup(0,1,2,...) = sup(20, 21, 22, . . .) = ω

▶ In particular, exponentiation is not given by function spaces.

7/12



The problem with exponentiation
▶ Classically:

α0 = 1 0β = 0 (if β ̸= 0)
αβ+1 = αβ × α αλ = sup

β<λ
αβ (if λ is a limit, α ̸= 0)

▶ No easy constructive solution; in fact:
Thm. (Imprecise) There is a well behaved exponentiation function on all ordinals
if and only if excluded middle holds.

▶ Exponentiation is unintuitive, e.g.

2ω = 2sup(0,1,2,...) = sup(20, 21, 22, . . .) = ω

▶ In particular, exponentiation is not given by function spaces.

7/12



Our work – the highlights

▶ Working constructively in homotopy type theory, we construct two well behaved
ordinal exponentiation functions α(−) with a minor condition on the base α:

▶ The first construction is abstract, uses suprema of ordinals, and is motivated by
the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.
It is well defined whenever α has a trichotomous least element: the least element
a⊥ ∈ α is further required to satisfy: ∀(x ∈ α). (a⊥ < x) ∨ (a⊥ = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

8/12



Our work – the highlights

▶ Working constructively in homotopy type theory, we construct two well behaved
ordinal exponentiation functions α(−) with a minor condition on the base α:
▶ The first construction is abstract, uses suprema of ordinals, and is motivated by

the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.
It is well defined whenever α has a trichotomous least element: the least element
a⊥ ∈ α is further required to satisfy: ∀(x ∈ α). (a⊥ < x) ∨ (a⊥ = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

8/12



Our work – the highlights

▶ Working constructively in homotopy type theory, we construct two well behaved
ordinal exponentiation functions α(−) with a minor condition on the base α:
▶ The first construction is abstract, uses suprema of ordinals, and is motivated by

the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.
It is well defined whenever α has a trichotomous least element: the least element
a⊥ ∈ α is further required to satisfy: ∀(x ∈ α). (a⊥ < x) ∨ (a⊥ = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

8/12



Our work – the highlights

▶ Working constructively in homotopy type theory, we construct two well behaved
ordinal exponentiation functions α(−) with a minor condition on the base α:
▶ The first construction is abstract, uses suprema of ordinals, and is motivated by

the expected equations.
It is well defined whenever α ≥ 1, i.e. whenever α has a least element.

▶ The second is more concrete, based on decreasing lists, and a constructive version
of a construction by Sierpiński based on functions with finite support.
It is well defined whenever α has a trichotomous least element: the least element
a⊥ ∈ α is further required to satisfy: ∀(x ∈ α). (a⊥ < x) ∨ (a⊥ = x).

▶ We show that our two constructions agree (whenever the base ordinal has a
trichotomous least element).

8/12



Commercial break
▶ A link to our paper is in the programme.

▶ All of its results are formalized in the proof assistant Agda, based on Martín
Escardó’s library TypeTopology. Clicking a 2 next to a definition, lemma,
theorem, etc. in the paper takes you to its formalization.

9/12

https://arxiv.org/abs/2501.14542


First solution: abstract exponentiation

▶ Our no-go theorem says that we cannot define αβ for arbitrary α, β. Let’s assume
α ≥ 1. We can shorten the specification to:

αβ+1 = αβ × α αsupi∈I Fi = 1 ∨ sup
i∈I

(αFi )

▶ If β is an ordinal and b0 ∈ β, then the initial segment β ↓b0 is an ordinal:

β ↓b0 := {b ∈ β | b < b0}

▶ Lemma. For every ordinal β we have β = supb0∈β(β ↓b0 + 1).
▶ Idea: If we had αβ, then

αβ = αsupb:β (β↓b + 1) = 1 ∨ sup
b:β

αβ↓b + 1 = 1 ∨ sup
b:β

(
αβ↓b × α

)
.

⇒ We take this as a definition (called abstract exponentiation).

10/12



First solution: abstract exponentiation

▶ Our no-go theorem says that we cannot define αβ for arbitrary α, β. Let’s assume
α ≥ 1. We can shorten the specification to:

αβ+1 = αβ × α αsupi∈I Fi = 1 ∨ sup
i∈I

(αFi )

▶ If β is an ordinal and b0 ∈ β, then the initial segment β ↓b0 is an ordinal:

β ↓b0 := {b ∈ β | b < b0}

▶ Lemma. For every ordinal β we have β = supb0∈β(β ↓b0 + 1).

▶ Idea: If we had αβ, then

αβ = αsupb:β (β↓b + 1) = 1 ∨ sup
b:β

αβ↓b + 1 = 1 ∨ sup
b:β

(
αβ↓b × α

)
.

⇒ We take this as a definition (called abstract exponentiation).

10/12



First solution: abstract exponentiation

▶ Our no-go theorem says that we cannot define αβ for arbitrary α, β. Let’s assume
α ≥ 1. We can shorten the specification to:

αβ+1 = αβ × α αsupi∈I Fi = 1 ∨ sup
i∈I

(αFi )

▶ If β is an ordinal and b0 ∈ β, then the initial segment β ↓b0 is an ordinal:

β ↓b0 := {b ∈ β | b < b0}

▶ Lemma. For every ordinal β we have β = supb0∈β(β ↓b0 + 1).
▶ Idea: If we had αβ, then

αβ = αsupb:β (β↓b + 1) = 1 ∨ sup
b:β

αβ↓b + 1 = 1 ∨ sup
b:β

(
αβ↓b × α

)
.

⇒ We take this as a definition (called abstract exponentiation).
10/12



Second solution: concrete exponentiation
▶ Sierpiński (1958):

αβ := {f : α → β | f has finite support (i.e. is almost everywhere 0)}

▶ Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs. The least element a⊥ ∈ α should not be an
output, so we consider

α>⊥ := {a ∈ α | a > a⊥}

and define concrete exponentiation exp(α, β) as the set of lists on α>⊥ × β that
are decreasing in the β-component:

exp(α, β) := {[(a1, b1), (a2, b2), . . . , (ak , bk)] | ai ∈ α>⊥, bi ∈ β, b1 > b2 > . . . > bk}

▶ We require a trichotomous least element a⊥, i.e. a⊥ satisfies
∀x ∈ α. (a⊥ < x) ∨ (a⊥ = x), to ensure that α>⊥ is an ordinal.

11/12



Second solution: concrete exponentiation
▶ Sierpiński (1958):

αβ := {f : α → β | f has finite support (i.e. is almost everywhere 0)}

▶ Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs. The least element a⊥ ∈ α should not be an
output, so we consider

α>⊥ := {a ∈ α | a > a⊥}

and define concrete exponentiation exp(α, β) as the set of lists on α>⊥ × β that
are decreasing in the β-component:

exp(α, β) := {[(a1, b1), (a2, b2), . . . , (ak , bk)] | ai ∈ α>⊥, bi ∈ β, b1 > b2 > . . . > bk}

▶ We require a trichotomous least element a⊥, i.e. a⊥ satisfies
∀x ∈ α. (a⊥ < x) ∨ (a⊥ = x), to ensure that α>⊥ is an ordinal.

11/12



Second solution: concrete exponentiation
▶ Sierpiński (1958):

αβ := {f : α → β | f has finite support (i.e. is almost everywhere 0)}

▶ Constructively well behaved version: represent a function with finite support as a
list of (output, input) pairs. The least element a⊥ ∈ α should not be an
output, so we consider

α>⊥ := {a ∈ α | a > a⊥}

and define concrete exponentiation exp(α, β) as the set of lists on α>⊥ × β that
are decreasing in the β-component:

exp(α, β) := {[(a1, b1), (a2, b2), . . . , (ak , bk)] | ai ∈ α>⊥, bi ∈ β, b1 > b2 > . . . > bk}

▶ We require a trichotomous least element a⊥, i.e. a⊥ satisfies
∀x ∈ α. (a⊥ < x) ∨ (a⊥ = x), to ensure that α>⊥ is an ordinal.

11/12



The whole is greater than the sum of its parts

▶ Thm. Concrete and abstract exponentiation coincide (as long as a⊥ is
trichotomous).
⇒ We get the best of both worlds.

▶ For example, for the abstract exponentiation, it is easy to show:

αβ+γ = αβ × αγ and αβ×γ =
(
αβ

)γ
.

▶ For concrete exponentiation, it is immediate that decidability properties are
preserved.

▶ In HoTT, univalence (“representation independence”) makes precise the idea that
we can always choose the representation we want.

Thanks for your attention!

12/12



The whole is greater than the sum of its parts

▶ Thm. Concrete and abstract exponentiation coincide (as long as a⊥ is
trichotomous).
⇒ We get the best of both worlds.

▶ For example, for the abstract exponentiation, it is easy to show:

αβ+γ = αβ × αγ and αβ×γ =
(
αβ

)γ
.

▶ For concrete exponentiation, it is immediate that decidability properties are
preserved.

▶ In HoTT, univalence (“representation independence”) makes precise the idea that
we can always choose the representation we want.

Thanks for your attention!

12/12


