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(1) What are ordinals?

Simple answer: Numbers for counting/ordering.

Better answer: Sets with an order < which is

I transitive

I wellfounded

I and trichotomous

I . . . or extensional (instead of trichotomous)
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(2) What are ordinals good for?

One answer: Proving termination.

÷:¥÷¥¥:*. ÷:¥¥¥°
""

→

l l

I
ww71+z > wut!ÉÉÉ > . - , y ↳

:) y
:-,

*



(3) How can we define ordinals in type theory?

Problem/feature of a constructive setting: different definition differ.

In our work (with Fred and Chuangjie), we study:

I Cantor normal forms

I Brouwer trees

I wellfounded and extensional orders.

decidable

partially decidable
undecidable



(3A) Cantor normal forms

Motivation: ↵ = !�1 + !�2 + · · ·+ !�n with �1 � �2 � · · · � �n

Definition
I Let T be the type of unlabeled binary trees:

0 : T

!� +� : T ! T ! T

I Let < be the lexicographical order on T .

I Define isCnf(↵) to express �1 � �2 � · · · � �n.

We write Cnf :⌘ ⌃(t : T ).isCnf(t) for the type of Cantor normal forms.

leaf →
→

node node cat) wide ws+ t①



(3B.1) Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type O of Brouwer trees?

zero : O succ : O ! O sup : (N ! O) ! O

sup (o, 1, 2 , 3 , . . - )

f- Sap ( 1,2,3, -- -)



(3B.2) Brouwer trees quotient inductive-inductively

c- f simulatedby g : I

V-i.J-j.fiEgj



(3C.1) Extensional wellfounded orders

Definition
The type Ord consists of pairs (X : Type,�: X ! X ! Prop) such that:
I � is transitive

I x � y ! y � z ! x � z;

I � is extensional
I elements with the same �-predecessors are equal;

I � is wellfounded
I every element is accessible, where x is accessible if every y � x is accessible.

data Acc :A→ Type where
ace :(a.A) → ( itbaa. Acc b) → Acc a

2 is wellfounded if a. Acc a



(3C.2) Extensional wellfounded orders

Let (X,�X), (Y,�Y ) : Ord.

X  Y is:
I a monotone function f : X ! Y

I such that: if y �Y f x, then there is x0 �X x such that f x0 = y.
Such an f is a simulation.

For y : Y , define Y/y :⌘ ⌃(y0 : Y ).y0 � y.

X < Y is:
I a simulation f : X  Y

I such that there is y : Y and f factors through X ' Y/y.
f : X < Y is a bounded simulation.



(4) Abstract setting

What do Cnf, Brw, Ord have to do with each other?
Why are they “types of ordinals”?

Assume we have a set A with relations <, such that:
I < is transitive and irreflexive;
I  is transitive, reflexive, and antisymmetric;
I (<) ⇢ () ;
I (< � )  (<). ☒ <y) → 4£27 → (✗<2)

Caveat : (✗a-y) → (y <2) → ⇐
<27

is not constructively true for
Ord



(4.1) Abstract setting: first properties

When is (A,<,) a “type of ordinals”?

First properties:

I A is set, < and  valued in props

I < is wellfounded

I < and  are extensional }✓ for Caf . Bow
,

ord



(4.2) Abstract setting: Zero, successor, limit “classification”

Obvious definitions:

a : A is zero if 8b.a  b.

a is a successor of b if a > b and 8x > b.x � a.
The successor is strong if b is the predecessor of a.

a is a supremum of f : N ! A if 8i.fi  a and (8i.fi  x) ! a  x.
If f is increasing, we say that a is its limit.

“Concrete” results: 1) Cnf, Brw, Ord uniquely have zero and strong successor.
2) Brw, Ord uniquely have limits.
3) For Cnf, Brw, we can decide in which case we are.

“Abstract” result: is-zero(a)] is-str-suc(a)] is-limit(a) is a proposition.



(4.3) Abstract arithmetic: addition

Definition
(A,<,) has addition if we have a function + : A ! A ! A such that:

is-zero(a) ! c+ a = c

a is-suc-of b ! d is-suc-of (c+ b) ! c+ a = d

a is-lim-of f ! b is-sup-of (�i.c+ fi) ! c+ a = b

(A,<,) has unique addition if there is exactly one function + with these
properties.

Concrete result: Cnf and Brw have unique addition.
Ord has addition (Q: is it unique?).

c+Uf = U a-fi



(4.4) Abstract arithmetic: multiplication

Assume that (A,<,) has addition.

Definition
(A,<,) has multiplication if we have · : A ! A ! A such that:

is-zero(a) ! c · a = a

a is-suc-of b ! c · a = c · b+ c

a is-lim-of f ! b is-sup-of (�i.c · fi) ! c · a = b

(A,<,) has unique multiplication if it has unique addition and there is exactly
one function · with the above properties.

Concrete result: Cnf and Brw have unique multiplication.
Ord has multiplication (Q: is it unique?).



(4.5) Abstract arithmetic: exponentation

Assume that (A,<,) has addition and multiplication.

Definition
A has exponentation with base c if there is exp(c,�) : A ! A such that:

is-zero(b) ! a is-suc-of b ! exp(c, b) = a

a is-suc-of b ! exp(c, a) = exp(c, b) · c

a is-lim-of f ! ¬is-zero(c) ! b is-sup-of (exp(c, fi)) ! exp(c, a) = b

a is-lim-of f ! is-zero(c) ! exp(c, a) = c

A has unique exponentation with base c if it has unique addition and
multiplication, and if exp(c,�) is unique.

Concrete result: Cnf and Brw have unique exponentation (with base !). (Q: Can
you show a constructive taboo if Ord has the same?)



(5) Connections between the notions

Cnf Brw Ord

decidable partially
decidable

undecidable

CtoB

(!a + b) 7! !CtoB(a) + CtoB(b)

• injective
• preserves and reflects <, 
• commutes with +, ⇤, !x

• bounded (by ✏0)

BtoO

A 7! ⌃(Y : Brw).Y < A

• injective
• preserves <, 
• over-approximates +, ⇤:
BtoO(x+ y) � BtoO(x) + BtoO(y)

• commutes with limits
(but not successors)

• BtoO is a simulation ) WLPO

• LEM ) BtoO is a simulation
• bounded (by Brw)

0 i.→ 0

A ÷¥÷
•


