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(1) What are ordinals?

Simple answer: Numbers for counting/ordering, a,g,
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Better answer: Sets with an order < which is
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(2) What are ordinals good for?




(3) How can we define ordinals in type theory?

Problem /feature of a constructive setting: different definition differ.
In our work (with Fred and Chuangjie), we study:

» Cantor normal forms 018 f/fl (4

» Brouwer trees }%)//‘/(/47 ﬂéfr’/Mé
» wellfounded and extensional orders. (/Molég/M//K



(3A) Cantor normal forms
Motivation: o = w”' + w2 + -« + WP with By > By > --- > B,

Definition
» Let 7 be the type of unlabeled binary trees:
oW = T =TT a=/ N8/ N LT
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» Let < be the lexicographical order on
» Define isCnf(a) to express 1 > 33 >+ -+ > f3,.

We write Cnf := (¢ : T).isCnf(¢) for the type of Cantor normal forms.



(3B.1) Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type O of Brouwer trees?

zero: O succ: O — O sup: (N—-O0)— 0O
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(3B.2) Brouwer trees quotient inductive-inductively

data Brw where
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(3C.1) Extensional wellfounded orders
Definition
The type Ord consists of pairs (X : Type, <: X — X — Prop) such that:

> < is transitive
> r<y—sy<z—-x<2;
> < is extensional

» elements with the same <-predecessors are equal;

» < is wellfounded
> every element is accessible, where z is accessible if every y < x is accessible.
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(3C.2) Extensional wellfounded orders
Let (X, -<X), (}/, -<y) : Ord.

X <Yis:
» a monotone function f: X — Y
» such that: if y <y [z, then there is g <x x such that fxq =y.

Such an f is a simulation.
Fory:Y, define Y, :=%(y : YV).y' <.

X <Yis:

» asimulation f: X <Y

» such that there is y : Y and f factors through X ~ Y,
f: X <Y is a bounded simulation.



(4) Abstract setting

What do Cnf, Brw, Ord have to do with each other?
Why are they “types of ordinals™?

Assume we have a set A with relations <, < such that:
> < is transitive and irreflexive;
» < is transitive, reflexive, and antisymmetric;
> (<) ()
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(4.1) Abstract setting: first properties

When is (A, <, <) a “type of ordinals"?
First properties:

» Ais set, < and < valued in props

» < is wellfounded \/ ﬁ{- U{ g
wl Cly
> d < ional (7 /
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(4.2) Abstract setting: Zero, successor, limit “classification”

Obvious definitions:
a: Ais zero if Vb.a < b.

a is a successor of b if a > b and Vx > b.z > a.
The successor is strong if b is the predecessor of a.

ais a supremumof f:N = AifVi.f; <aand (Vi.fy <z) > a <.
If f is increasing, we say that a is its limit.

“Concrete” results: 1) Cnf, Brw, Ord uniquely have zero and strong successor.
2) Brw, Ord uniquely have limits.
3) For Cnf, Brw, we can decide in which case we are.

“Abstract” result:  is-zero(a) Wis-str-suc(a) Wis-limit(a) is a proposition.



(4.3) Abstract arithmetic: addition

Definition
(A, <, <) has addition if we have a function +: A — A — A such that:

is-zero(a) = c+a=c
a is-suc-of b — d is-suc-of (c+b) > c+a=d

a is-lim-of f — bis-sup-of (Mi.c+ f;) > c+a=0»>
C+ U/ = U c«h[i

(A, <, <) has unique addition if there is exactly one function + with these
properties.

Concrete result: Cnf and Brw have unique addition.
Ord has addition (Q: is it unique?).



(4.4) Abstract arithmetic: multiplication

Assume that (A, <, <) has addition.

Definition
(A, <, <) has multiplication if we have - : A — A — A such that:

is-zero(a) > c-a=a
ais-suc-of b -c-a=c-b+c
a is-lim-of f — bis-sup-of (Ni.c- f;) > c-a=0b

(A, <, <) has unique multiplication if it has unique addition and there is exactly
one function - with the above properties.

Concrete result: Cnf and Brw have unique multiplication.
Ord has multiplication (Q: is it unique?).



(4.5) Abstract arithmetic: exponentation

Assume that (A, <, <) has addition and multiplication.

Definition

A has exponentation with base c if there is exp(c,—) : A — A such that:
is-zero(b) — a is-suc-of b — exp(c,b) = a
a is-suc-of b — exp(c, a) = exp(c,b) - ¢
a is-lim-of f — —is-zero(c) — b is-sup-of (exp(c, fi)) — exp(c,a) = b
a is-lim-of f — is-zero(c) — exp(c,a) = ¢

A has unique exponentation with base c if it has unique addition and
multiplication, and if exp(c, —) is unique.

Concrete result: Cnf and Brw have unique exponentation (with base w). (Q: Can
you show a constructive taboo if Ord has the same?)



(5) Connections between the notions

decidable Zzziiaeilgle
( CtoB ( BtoO - [Ord
(W* 4 b) > @B 4 CtOB(b) A= B(Y 1 Brw).Y <A ndecidable
° injecgivle’9 o e injective
e preserves and reflects <, < e preserves <, <
o commutes with +, %, w® e over-approximates 4+, *:

BtoO(z + y) > BtoO(x) + BtoO(y)
e commutes with limits
‘ @ (but n.ot su.ccessors)
‘ é/ e BtoO is a simulation = WLPO
C? 4 e LEM = BtoO is a simulation

//
e bounded (by Brw)

e bounded (by €0)
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