
G54FOP-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE

A LEVEL 2 MODULE, SPRING SEMESTER 2016-2017

G54FOP FOUNDATIONS OF PROGRAMMING

Time allowed 2 hours

Candidates may complete the front cover of their answer book
and sign their desk card but must NOT write anything else

until the start of the examination period is announced

Answer all 4 questions
Marks available for sections of questions are shown in square brackets.

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first language
is not English may use a standard translation dictionary to translate

between that language and English provided that neither language is the
subject of this examination. Subject specific translation dictionaries are not

permitted.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

DO NOT turn your examination paper over
until instructed to do so

G54FOP-E1 Turn Over



2 G54FOP-E1

Question 1: [25%]

Untyped λ-calculus

(a) [8%]

Explain what a reduction strategy is. Define the call-by-name and
call-by-value reduction strategies.

Explain their difference by showing the reduction steps in the evalua-
tion of the following term in both strategies:

(λx.x x) ((λy.y) z).

(b) [8%]

For each of the following λ-terms, state if it is normalizable and, in case
it is, write its normal form.

1. (λx.x (λy.y x)) (λu.u)

2. (λx.λy.y (x y)) (λz.z) (λu.u u)

3. (λx.λy.x (y x)) (λz.z) (λu.u u)

4. (λx.λy.(y x) y) (λz.z) (λu.λv.u)

(c) [9%]

Lists are constructed by using two combinators, nil for the empty list
and cons for the construction of a new list from a head and a tail:

nil = λf.λx.x
consh t = λf.λx.f h (t f x)

Write the (normal form) representation of the list [3, 2, 0] in this en-
coding (you can leave the numerals unevaluated).

Explain in what sense lists are represented as iterators.

Write a λ-term sum that computes the sum of the elements of a list of
numbers (you can assume the addition combinator plus to be given).
It must satisfy:

sum nil ∗ 0
sum (consh t) ∗ plush (sum t)

G54FOP-E1 Continued on next page



3 G54FOP-E1

Question 2: [25%]

Simply typed λ-calculus

(a) [8%]

Define the notions of weak and strong normalization. Give an example
in the untyped λ-calculus of a term that weakly normalizes but doesn’t
strongly normalize.

(b) [8%]

The following are incomplete terms in the simply typed λ-calculus with
a base type o. Give types to the abstracted variables and state what
the type of the term is.

1. λx :?. λy :?. λz :?. x y (z y)

2. λu :?. λv :?. v (u v)

3. λx :?.x (λz :?.z)

(c) [9%]

Remember the definitions of the basic types of Booleans and Natural
Numbers in λ→ :

Bool = o→ o→ o
Nat = (o→ o)→ o→ o

Write terms of λ→ that implements the zero test and conditional
branching:

isZero : Nat→ Bool, if : Bool→ Nat→ Nat→ Nat;

such that

isZero 0 ∗ true
isZeron+ 1 ∗ false

if truenm ∗ n
if falsenm ∗ m.

G54FOP-E1 Turn Over



4 G54FOP-E1

Question 3: [25%]

CoInductive Types

(a) [8%]

Define what an coalgebra for a functor F is.

What characterizes the final F -coalgebra? What is an anamorphism?
[You can give the defining property of the anamorphism either by an
equation or by drawing a commutative diagram.]

(b) [8%]

Recall the informal definition of the type of streams of bits:

codata BitStr : Set
c0 : BitStr→ BitStr
c1 : BitStr→ BitStr

We use the notation 1 / 0 / · · · for c1 (c0 · · · ).
Write the type as a final coalgebra: BitStr = νF . What should the
functor F be?

F X = ?

Let 〈νF, out〉 be the final coalgebra. How do you define the constructors
in terms of out? [Use the inverse of the coalgebra: in = out−1.]

c0 = ? c1 = ?

(c) [9%]

Assume you have a primality test function prime : Nat→ Bool.

Define the stream of primality bits of the natural numbers: the ith
element of the stream is 1 if i is a prime number, 1 otherwise:

prstr : BitStr
prstr = 0 / 0 / 1 / 1 / 0 / 1 / 0 / 1 / 0 / 0 / · · ·

(Elements at indices 2, 3, 5, 7 are 1 because 2, 3, 5, 7 are primes.)

[Use an auxiliary function prstrfrom : N→ BitStr, defined as the anamor-
phism of a coalgebra, that gives the primality bits from a given starting
number.]

G54FOP-E1 Continued on next page



5 G54FOP-E1

Question 4: [25%]

Inductive Types and System F
The type of binary trees with leaves labelled by elements of a type A is

informally defined like this:

data TreeA : Set
leaf : A→ TreeA
node : TreeA → TreeA → TreeA

(a) [8%]

Write this type as an initial algebra: TreeA = µF . What should the
functor F be?

F X = ?

Write down the introduction, elimination and reduction rules for µF .

(b) [8%]

Write a system F realization of the type TreeA. How are the construc-
tors leaf and node implemented?

(c) [9%]

Write a system F term that implements the function that computes
the mirror image of a tree. It must satisfy the following typing and
reduction properties:

mirror : TreeA → TreeA
mirror (leaf a) ∗ leaf a
mirror (node t1 t2) ∗ node (mirror t1) (mirror t2)

G54FOP-E1 End


