
V Capretta 30 G54FOP 2018

Chapter 4

Recursion in the λ-calculus

We have seen how to implement basic data types and simple operations on them.
We want to have a complete programming environment where we can define any
computable function. We have already seen, in the definition of plus, mult and
exp, how to define iterative functions on Church numerals. Now we see how to
implement general recursion.

Church Numerals are Iterators

The idea behind Church numerals is that a number n represent the application
of a given function n times. So when we want to iterate an operation a fixed
number of times, we just apply the corresponding number to it. This means that
functions defined on natural numbers by recursion on their inductive structure
can be encoded directly by applying the number to the one-step unfolding of
the function. We have seen this already in the definition of the basic arithmetic
operations plus, mult, exp.

However, iteration is not as flexible as recursion. In recursion, at each step
we are allowed to use both the argument value and the recursive call on its
predecessor, while in iteration we have access only to the latter. Take these two
definitions of recursive functions, the first computes the exponential on base
three 3n, the second computes the factorial n!:

pow3 : N → N

pow3 0 = 1
pow3 (n+ 1) = 3 · (pow3 n)

fact : N → N

fact 0 = 1
fact (n+ 1) = n · (factn)

The definition is very similar, but while pow3 can be directly encoded using
iterators, fact is more problematic:

pow3 = λn.n (mult 3) 1 fact = λn.n (mult ?) 1

Using n as an iterator means applying the same function n times. This works
well with pow3: we apply n times the function (mult 3), starting with the initial

31

CHAPTER 4. RECURSION IN THE λ-CALCULUS

value 1. But with fact we need to apply a different function (multn) at every
step. It cannot be done with simple iteration.

One solution is to remember the value of the argument by returning it as
output together with the output of the function. So we define an auxiliary
function factaux such that factaux n = 〈n, factn〉. We can then extract the value
n that we need from it:

factaux = λn.n (λp.〈(succ (fst p)),mult (succ (fst p)) (snd p)〉) 〈0, 1〉.

This λ-term is equivalent to the following recursive definition:

factaux : N → N× N

factaux 0 = 〈0, 1〉
factaux (n+ 1) = 〈m+ 1, (m+ 1) · r〉 where 〈m, r〉 = factaux n.

To compute factaux (n + 1), we call it recursively on the predecessor n. The
result of this call is a pair 〈m, r〉. We return m + 1 and the product of m + 1
and r. It is easy to see that m will always be equal to n (and r is the factorial of
it). But to use iteration, we have to reconstruct n as a returned result, since we
cannot use the argument. Finally, the factorial function just returns the second
component of the auxiliary function:

fact := λn.snd (factaux n).

Another example where we need to extend iteration to allow more flexible
recursion is the computation of the Fibonacci numbers. Recursively, they are
defined as follows:

fib : N → N

fib 0 = 0
fib 1 = 1
fib (n+ 2) = (fibn) + (fib (n+ 1)).

In this case, we cannot directly apply iteration because we call the function
recursively not just on the predecessor of the argument, but also on the prede-
cessor of the predecessor. The trick to realize this with iteration is, once again,
to extend the output to a pair of values, containing respectively the Fibonacci
number of the present argument and of its successor:

fibaux : N → N× N

fibaux 0 = 〈0, 1〉
fibaux (n+ 1) = 〈y, x+ y〉 where 〈x, y〉 = fibaux n.

As λ-term, this function is just an iterator:

fibaux = λn.n (λp.〈snd p, plus (fst p) (snd p)〉) 〈0, 1〉,
fib = λn.fst (fibaux n).

This technique also gives us a clue to implement the predecessor and sub-
traction functions on Church numerals, that seemed quite difficult before. The

V Capretta 32 G54FOP 2018

CHAPTER 4. RECURSION IN THE λ-CALCULUS

idea is similar to the Fibonacci one: return two values, the first is the predeces-
sor of the present argument, the second is the predecessor of its successor. Of
course that second value is going to be the argument itself, but as before, we
need to reconstruct it in the output to have it when we need it.

predaux = λn.n (λp.〈snd p, succ (snd p)〉) 〈0, 0〉
pred = λn.fst (predaux n).

Subtraction can be realized by simply iterating the predecessor:

minus = λn.λm.m predn.

Other Numeral Systems: The definition of predecessor is correct but inef-
ficient. To compute the predecessor of (succn) we must iterate the operation
on pairs n times. It would be more efficient if we could just strip the succ away
in one step. This is not possible with the Church encoding. But there are
other possible ways to represent natural numbers in the λ-calculus. One is the
following:

p0q = λx.x, pn+ 1q = 〈false, pnq〉.

As an exercise, try to define the basic arithmetic operations on this encoding.
See how much easier it is to define the predecessor.

Another option is to modify Church numerals, enriching them with an extra
parameter, so making them recursors rather than just iterators:

0̃ = λf.λx.x, ñ+ 1 = λf.λx.f ñ (ñ f x).

TO DO [Show how recursion (for example the factorial and Fibonacci func-
tions, can be done more easily using these alternative number systems.]

TO DO [There representations were all unary. Show how to implement a
binary representation of natural numbers. Then extend it to numerals in any base.
]

General Recursion

So, using clever techniques (auxiliary functions with an extended output) we
can realize full recursion. However, not all functions on natural numbers are
recursive on the size of the number: the recursive calls may be applied to values
that are not the direct predecessor of the input and may even be bigger. Some
general recursive functions are not even total: they may diverge for some input
values.

As an example, consider the following variant of the hailstone sequence:

hailn =





0 if n ≤ 1
hail (n/2) + 1 if n > 1, n even
hail (3n+ 1) + 1 if n > 1, n odd

V Capretta 33 G54FOP 2018

CHAPTER 4. RECURSION IN THE λ-CALCULUS

Traditionally, starting from a number n, the hailstone sequence goes through
the numbers obtained by the following process: if n is 0 or 1 stop; if n is larger
than 1 and odd, the next number in the sequence is the half of n; if n is larger
than 1 and odd, the next number is three times n plus 1. The function hail
returns the length of the hailstone sequence.

Notice that in the last case the recursive call is hail (3n + 1), so we must
calculate the function on an argument that is larger than the original input. This
cannot be realized with normal recursion. We call it general recursion, meaning
that recursive calls are unrestricted. This of course does not guarantee that
the computation will never end. In the specific case of the hailstone sequence,
it has been verified that it terminates for all initial values smaller than 260.
But nobody knows whether it always terminates for any value. This is still a
mathematical mystery, known as the Collatz Conjecture.

How can we implement hail in the λ-calculus? Surely we can’t hope to do it
with simple recursion: that would automatically imply that the function always
terminates.

If we want to use the λ-calculus as a complete programming language, there
should be a way to define any computable function, even non-total ones. This
is indeed possible. In fact there is a single λ-term, called the Y combinator, that
allows us to use unrestricted recursion:

Y := λf.(λx.f (xx)) (λx.f (xx)).

This definition is inspired by the non-normalizing term ω. In fact we have that
Y id ∗ ω. The most striking property of Y is that it computes a fixed point for
every term F :

YF ∗ F (Y F).

This is not exactly true: to be precise, YF (λx.F (xx)) (λx.F (xx)) =:
fixF and fixF

∗ F (fixF). If we keep reducing, we get an infinite sequence of
applications of F :

fixF
∗ F fixF

∗ F (F fixF)
∗ F (F (F fixF))

∗ · · ·

To define a recursive function, we just need to encode a single step of it as a
term F and then use Y to iterate that step as many times as it is necessary to
get a result. Here is, for example, the definition of the factorial:

factstep := λf.λn.if (isZeron) 1 (multn (f (predn)))
fact := Y factstep.

We can also define the function that measures the length of the hailstone
sequences. (Exercise: implement the test functions leq that checks the less-
or-equal relation, even that checks divisibility by two, and the division by two
half.)

hail = Y λh.λn.if (leqn 1)
0
if (evenn)

(h (half n))
(h (succ (mult 3n)))

V Capretta 34 G54FOP 2018

CHAPTER 4. RECURSION IN THE λ-CALCULUS

The combinator Y is one of the most important constructions in the λ-
calculus. Using it, we can show that all computable functions can be repre-
sented. Therefore the λ-calculus is a Turing-complete language: every function
that can be computed in any known model of computation (Turing machines,
µ-recursive functions, the von Neumann architecture, all known programming
languages) can be realized by a λ-term.

The statement that this notion of computation is universal, that is, nobody
will ever find a way to compute something that cannot be realized in one and
all of these models, is known as the Church-Turing Thesis.

Infinite sequences

We have seen how tuples and lists can be represented by λ-terms. One of the
applications of the Y combinator is that we can also represent infinite sequences,
known in computer science as streams.

The notation for streams uses a cons constructor ⊳. So a generic stream is
denoted by

a0 ⊳ a1 ⊳ a2 ⊳ a3 ⊳ · · · .

Intuitively, a stream is implemented as iterated pairing:

〈a0, 〈a1, 〈a2, 〈a3, · · ·〉〉〉〉.

However, obviously we cannot write out this whole term explicitly. The best we
can do is to define a λ-term t that reduces to partial unfoldings of the stream:

t ∗ 〈a0, t0〉

∗ 〈a0, 〈a1, t1〉〉

∗ 〈a0, 〈a1, 〈a2, t2〉〉〉

∗ 〈a0, 〈a1, 〈a2, 〈a3, t3〉〉〉〉

∗ · · · .

This term cannot be normalizing, but has to reduce forever, generating all the
elements of the stream in the process. We can construct it by a use of the fixed
point combinator.

For example, let’s see how to realize the stream of all natural numbers,
nats = 0⊳1⊳2⊳3⊳· · ·. More generally, we want to define a function natsFrom that
generates the sequence of naturals starting from a given input: natsFromn =
n ⊳ (n + 1) ⊳ (n + 2) ⊳ (n + 3) ⊳ · · ·. This can be easily realized using the Y
combinator:

natsFrom = Y (λf.λn.〈n, f (succn)〉), nats = natsFrom 0.

The head function, returning the first element of a stream, and the tail func-
tion, returning the rest of the stream, are just the first and second projections
of pairs:

head = fst, tail = snd.

V Capretta 35 G54FOP 2018

CHAPTER 4. RECURSION IN THE λ-CALCULUS

We can easily define point-wise operations on streams. For example, adding
two streams of natural numbers one element at a time can be specified by a
recursive equation:

σ ⊕ τ = (headσ + head τ) ⊳ (tailσ ⊕ tail τ)

which we realize by an application of the fixed point combinator:

sumstream = Y λf.λx.λy.〈plus (headx) (head y), f (tailx) (tail y)〉

This gives us a clever way to define the streams of Fibonacci numbers. In-
tuitively, we can specify it by the following recursive equation:

fibs = 0 ⊳ 1 ⊳ (fibs⊕ (tail fibs))

which can again be realized by an application of the fixed point combinator:

fibs = Y λs.〈0, 〈1, sumstream s (tail s)〉〉.

Evaluation Strategies

As we have seen, a λ-term may contain several redexes. We can choose which
one to reduce first. When we perform a step of reduction, new redexes may
appear, old redexes may be duplicated or disappear. However, the confluence
theorem guarantees that two different reduction paths can always be continued
to a common reduct. A corollary is uniqueness of normal forms: if a term is
reduced to normal form using two different reduction paths, the normal form at
the end of the two paths is the same.

However, nothing guarantees that we will reach a normal form using any
path, even when a normal form exists. A simple illustration is the following
term:

(λx.λy.x) idω.

This term contains two redexes. The first one is the top one involving the
variable x. If we reduce it and then reduce the new redex involving the variable
y, we obtain a normal form:

(λx.λy.x) idω (λy.id)ω id.

However, if we try to reduce the redex inside ω, we obtain the same term, and
we could stubbornly try to reduce that same redex again in an infinite reduction
path:

(λx.λy.x) idω (λx.λy.x) idω (λx.λy.x) idω · · · .

So whether we eventually reach a normal form or not may depend on our choice
of redex.

There are several main reduction strategies, ways of choosing which redex
to reduce first. Whether we reach a normal form and the complexity of the
computation (how many reduction steps we need to do) depends on the strategy.

V Capretta 36 G54FOP 2018

CHAPTER 4. RECURSION IN THE λ-CALCULUS

Full β-reduction: Reduce any redex you want. If we reduce all the redexes present in the
original term before reducing the new ones created by reduction steps, we
are guaranteed to find the normal form, if it exists. However, we have
to take care of the fact that the original redexes may be duplicated into
many copies and we must reduce each of them. If we use a term-graph
representation this is not a problem: with sharing it’s not the subterms
containing the redexes that are duplicated, but just the pointer to them.
An extended notion of reduction may allow us to reduce all redexes present
in a term in just one step.

Normal Order: always reduce the leftmost redex (the top redex in the abstract syntax tree
representation). This is a normalizing strategy: if a normal form exists,
this strategy will find it.

Call-by-Name: Never reduce under an abstraction, so a term of the form λx.t does not
reduce, no matter how many redexes t contains; we consider it already
a value. On the other hand, when we have an application (f u), we first
reduce f until it becomes an abstraction (if ever), f ∗ λx.t; then we
reduce the top redex, (λx.t)u t[x := u]; then we continue reducing
the resulting term. The reason this strategy is designated as call-by-name

is that, when applying a function, we make the substitution [x := u]
immediately, before reducing u to a value, so we use the name u, that is,
the syntactic form, rather than its value.

Call-by-Value: As in the previous one, but when reducing the application (λx.t)u we
must first reduce u to a value and only afterwards reduce the main redex.
As we mentioned in the previous point, we consider every λ-abstraction
a value. In richer systems, where we have actual native data types, there
will be also more precise notions of what a value is. For example, a value
of a number type will be a numeral.

In functional programming languages there is a divide between strict evalu-
ation, which is a variant of the call-by-value reduction strategy, and lazy evalu-
ation, which is a variant of the call-by-name strategy. OCaml is a popular strict
programming language. Haskell is a popular lazy programming language.

History and Literature

The alternative number system p−q, which allows a more efficient implementa-
tion of predecessor, is used in the book by Barendregt [1], who also discusses
number systems in λ-calculus in general.

V Capretta 37 G54FOP 2018

