
Very short lecture notes:

Mathematical Foundations of Programming
University of Nottingham, Computer Science, module code G54FOP, Spring 2018

Nicolai Kraus

Draft of February 15, 2018

What is this? This document is written for students of the module G54FOP (Nottingham,
Spring 2018, two times one hour per week). After each lecture, I add some notes on what we
have done. Thus, this document summarises the lectures but not more. It mixes what I write
on the board with what I say. It cannot serve as a replacement for an actual book or for the
lecture, but it can supplement students’ own notes.
The lecture is based on a couple of sources:

• Venanzio Capretta’s lecture notes for this module from previous years: http://www.
cs.nott.ac.uk/~pszvc/g54fop/

• My own studies of this topic (many different sources, in particular the lecture Semantics
of Programming Languages by Andreas Abel and Ulrich Schöpp, LMU Munich 2010).

• Andrew Pitts’ lecture notes: http://www.cl.cam.ac.uk/teaching/2001/Semantics/
• The Agda course by Thorsten Altenkirch: http://www.cs.nott.ac.uk/~psztxa/g53cfr/
• (more may be added later)

1

http://www.cs.nott.ac.uk/~pszvc/g54fop/
http://www.cs.nott.ac.uk/~pszvc/g54fop/
http://www.cl.cam.ac.uk/teaching/2001/Semantics/
http://www.cs.nott.ac.uk/~psztxa/g53cfr/

LECTURE 1 (31 JANUARY 2018)

Aspects of Programming Languages. Consider the following three lines:

(1) x=2, print(x);

(2) x=2; print(x);

(3) x=1; x=x+1; print(x);

Are these lines programs? Are they the same program? A programming language has several
aspects:

(I) Syntax: Which strings (or trees) are programs? Which symbols are allowed and which
are reserved? For example, the syntax of an (imaginary) language could disallow the
usage of a comma as in (1), and thus (1) would not be a program in the language given
by that syntax. (2) and (3) could be valid programs. From the point of view of the syntax,
they are different (they are different strings!). We will see how we can specify the syntax
of a language via a Backus-Naur Form (BNF) or via derivation rules (needless to say,
there are other ways as well).

(II) Semantics: What is the meaning of a program? What should it do? A priori, a pro-
gram is just a string (or a tree) of symbols. The strings (1), (2), (3) only “make sense” to
us because the (non-specified) syntax on which they are based is intuitive and famil-
iar from programming languages that we know. We could define a syntax which has
no obvious “meaning” (if one sees a program written in the language Brainfuck for the
first time, one will find it hard to make sense of seemingly random strings of symbols).
There are various ways to give semantics to a language. One could just give a reference
implementation and say that the meaning of a program is just what this reference im-
plementation does with it. One could also describe the semantics informally, which is
what one will find if you open a tutorial for Java, for example. What we are interested
in this lecture is formal sematics, e.g. mathematically precise ways of assigning mean-
ings to a program. The possibilities that we will look at are denotational sematics and
operational semantics.

(III) Other aspects are: How should the language be used (“software engineering”)? For
which problems is it suitable? What about commenting and should one use indenta-
tion (if the latter is not part of the syntax)? These questions are not of mathematical
nature, and they are not part of this lecture.

Example: A simple language of arithmetic expressions (see the lecture notes of Venanzio
Capretta). We can specify the syntax of this language with a Backus-Naur Form:

Expr ::= t | f | z | s Expr | p Expr | iz Expr | if Expr then Expr else Expr

Here, Expr stands for the set of all allowed arithmetic expression, and they are inductively de-
fined through the different possibilities above (the pipe | separates possibilities). This means
that an element of Expr is either t or it is f or it is . . . or it is if Expr then Expr else Expr

2

where every instance of Expr is replaced by an element of the set Expr . Thus, we should think
of an expression as a tree (t is a node with no children, ifthenelse is a node with three
children). In order to write them as strings, we use parentheses to encode the tree structure;
we do not go into the details of this, but we regard s (z) and s z as syntactically equal.
Examples of expressions are:

(i) z
(ii) p t

(iii) if (s f) then z else (if z then t else f)

If at this point it is unclear what the above expressions are supposed to mean, then this is at
least partially intended. Remember that we are currently only discussing the syntax, but not
yet the semantics.
If we use inference rules, we can present the language Expr as follows:

t : Expr f : Expr z : Expr

e : Expr

s e : Expr

e : Expr

p e : Expr

e : Expr

iz e : Expr

e1 : Expr e2 : Expr e3 : Expr

if e1 then e2 else e3 : Expr

This should be read as follows. Each horizontal line stands for one rule. The colon “:” means
“is”, we could as well write “∈” instead of “:”. The statements above each horizontal line are
the assumptions, the statement below each line is the conclusion of the rule. In general, each
rule as an arbitrary (non-negative but, at least for us, finite) number of assumptions, and
exactly one conclusion. Thus, the fourth rule can be read as “if e is an arithmetic expression,
then so is s e”. The last rule has three separate assumptions. The first three rules do not have
any assumptions.
If we want to derive the expression (iii) from above with these rules, we need to draw a deriva-
tion tree as follows:

f : Expr

s f : Expr z : Expr

z : Expr t : Expr f : Expr

if z then t else f : Expr

if (s f) then z else (if z then t else f) : Expr

Remark 1. So far, it probably seems as if the derivation rules are just a long and tedious way
to write down the same information that we get from the Backus-Naur form. We will later see
that derivation rules offer more flexibility and are somewhat more powerful.

Now that we have specified the syntax of the language Expr , let us try to specify possible
semantics. We look at denotational semantics first. In this approach, we choose a mathemat-
ical structure (ideally one which we understand well). Then, we say what each expression
arithmetic expression “means”, by mapping the set Expr to this structure.

3

In our example, as the structure we simply choose the set

S := {True,False}∪N∪ {⊥}

= {True,False,0,1,2,3, . . . ,⊥}

That is, each element of the set S is a boolean value, or a natural number, or the symbol
⊥. The latter can be read as “bottom” or “undefined”. We define a function J−K : Expr →
S; the name of this function (“semantic brackets”) probably looks strange, but the idea is
that we write JeK instead of J−K(e). This function is defined by recursion (sometimes called
structural recursion, or just induction) on how elements of Expr are generated, much like you
have defined functions in Haskell in earlier courses using pattern matching (e, e1 and so on
are variables which replace expressions):

J t K= True

J f K= False

J z K= 0

J s eK=
{
JeK+1 if JeK is a number

⊥ otherwise

J p eK=


0 if JeK= 0

JeK−1 if JeK is a number larger than 0

⊥ otherwise

J iz eK=


True if JeK= 0

False if JeK is a number other than 0

⊥ otherwise

J if e1 then e2 else e3K=



Je2K if Je1K= True and Je2K, Je3K are both

numbers or both boolean values

Je3K if Je1K= False and Je2K, Je3K are both

numbers or both boolean values

⊥ otherwise

Remark 2. Now, the meaning of expressions in Expr is suddenly clear! t stands for True,
f stands for False, z for 0, s for “+1” (successor), p for “−1” (predecessor), iz for “is the
argument 0?”, and ifthenelse for a case distinction. Expressions which “don’t make sense”,
such as “True+1”, are simply undefined.
However, it is important to keep in mind that this is only one possible meaning! We have
defined this meaning, and we could understand the expressions completely differently! For
example, we could say that f stands for 0 and t for 5, but we could also do much crazier
things and assign the name of a lecturer to every expression, or whatever we want.
But even if we already had in mind that t should mean True, and that we don’t want negative
numbers, and so on, we still have made some choices in the definition above. For example,
we have chosen that if t then t else z is undefined, but it could as well be True.

4

Exercises. Note: The module catalogue determines that the module G54FOP does not come
with problem sets/homework. To pass the module, you do not need to do these exercises.
However, they may help you to deepen your understanding.

1. Calculate:

• J s (s (s z))K

• J p (s z)K

• J s (p z)K

• J s (iz z)K

• J if t then z else t K

2. Define new semantics, by giving a new definition of J−K, which evaluates an expres-
sion to True if the expression “makes sense” and to False if the expression “makes no
sense”. Here, you need to choose yourself what “making sense” means since I have not
given a definition. It could just mean that in our semantics above the expression is not
undefined, but there are other possibilities.

3. Extend the language Expr in some reasonable way, e.g. by adding symbols for “or”,
“and” (for booleans) or “plus”, “times” (for numbers). Extend the denotational seman-
tics with these new constructs.

LECTURE 2 (1 FEBRUARY 2018)

Let us continue with the language Expr of simple arithmetic expressions. We want to look
at operational semantics. In this case, we specify the meaning of an expression (or a pro-
gram) by saying how it computes. For example, we could take the following set of reduction
or simplification rules:

iz z t

iz (s e) f

if t then e2 else e3 e2

if f then e2 else e3 e3

p (s e) e

p z z

If we have the above rules, we cannot reduce a term such as if (iz z) then t else f . To
do this, we would first have to reduce a subterm (or we have to reduce “in a context”), namely
iz z . We can make this precise by giving the following structural rules (we have not stated

5

them all explicitly in the lecture, but here we go):

e e ′

s e s e ′
e e ′

p e p e ′
e e ′

iz e1 iz e2

e1 e ′

if e1 then e2 else e3 if e ′ then e2 else e3

e2 e ′

if e1 then e2 else e3 if e1 then e ′ else e3

e3 e ′

if e1 then e2 else e3 if e1 then e2 else e ′

Let us write e n e ′ for “e can be reduced to e ′ in n steps”, i.e. there are e1,e2, . . . ,en with

e = e1 e2 e3 . . . en = e ′.

Let us further write e ∗ e ′ (“e reduces to e ′ in any number of steps”) if there is a number n
such that e n e ′. We also allow ourselves to write e ≤n e ′, meaning that e reduces to e ′ in
n or fewer steps.

Remark 3. It is important to note that we have not defined a reduction algorithm. We have
not specified in which order an expression should be reduced; we have only said what allowed
reductions are.

We certainly could specify a reduction strategy, but we might not want to. Maybe we do
not know what the most efficient way of reducing is, and want to leave it to other people to
figure this out. However, we have brought ourselves in a potentially tricky situation: What
if an expression reduces to f with one reduction sequence, but it also to t with another
reduction sequence? A reduction system is called confluent if this sort of situation cannot
occur. We want to show it for our language:

Theorem 4 (Confluence). If we have expressions e1,e2,e3 such that e1 ∗ e2 and e1 ∗ e3,
then there is a fourth expression e4 such that e2 ∗ e4 and e3 ∗ e4. This can also be
expressed by saying that whenever we have the solid part of the following diagram, we can find
e4 and the dashed part:

e1

e2 e3

e4

Before we give a proof, we show a slightly simpler property.

Lemma 5. Assume we have e1,e2,e3 such that e1 ≤1 e2 (recall that this notation means that
e1 reduces to e2 in at most one step) and e1 ≤1 e3. Then, there is an e4 such that e2 ≤1 e4

and e3 ≤1 e4.

6

Proof. If we have e1 0 e2, we have e1 = e2 and can choose e4 := e3, and similarly, the case
e1 0 e3 is trivial (we will later see that these cases are only included in the lemma to make
it directly applicable to the proof of the confluence theorem). Thus, what is left is the case
where e1 e2 and e1 e3 (recall that this means “exactly one step”).
Recall that a tree s is a full subtree of a tree t if every node of s is a node of t , and every
node of s has the same children that it has in t . Consider the syntax tree of e1. The first
reduction determines a full subtree of the syntax tree of e1; it is the tree where the reduction
e1 r2 happens at the root, and we call it r2. The corresponsing expression must be one of
the left sides of the six reduction rules. Similarly, the subtree of e1 determined by the second
reduction is called r3.
We distinguish three cases:

• If r2 = r3, the statement is trivial since no two reduction rules have identical left sides
(i.e. if we know where we reduce, we do not have more than one choice), implying
e2 = e3 and we can chose e4 := e2.

• If these two subtrees are disjoint, then the two reductions happen in two different
branches of the tree e1. In this case, if we do r1 first, we can perform r2 afterwards,
and vice versa, reaching the same expression e4 in both cases.

• The last remaining case is that r3 is a subtree of r2 or vice versa, but we can without
loss of generality assume that the first is the case. The expression corresponding to
r2 (which we also call r2) is of the form of a left side of one of the reduction rules. If
r2 is (s x), then r3 is contained in x, since no reduction rule starts with s . In this
case, the two reductions of e1 can be done independently of the other, so if we do one
first, we can do the other afterwards, and vice versa; in each case, we arrive at the same
expression which we call e4. If r2 is if t then x2 else x3, then r3 is either contained in
x2 (the same argument as before applies) or in x3 (in this case, it is easy to see that we
can choose e4 := x2). The other cases are very similar.

The above lemma makes it simple to show the confluence theorem:

Proof of Theorem 4. By assumption, we have numbers k,m such that e1 k e2 and e1 m

e3. We can apply Lemma 5 k ·m times, which formally amounts to applying induction first
on one, then the other. The easiest way of seeing what happens is to look at the following

7

diagram, which illustrates the case k = m = 3:

e1

• •

• • •

e2 • • e3

• • •

• •

e4

Remark 6. Confluence is a very important property, but not every reduction system enjoys it.
In fact, there are very subtle ways in which the proof of Lemma 5 could go wrong, and where
confluence could ultimately fail. For example, we could consider the language Expr with the
six simplification rules given above, and the innocent-looking seventh rule

s (p e) e.

This rule seems to make sense, since it says that “subtracting 1” is canceled out by adding 1”,
similar to how the rule p (s e) e works. But, with these seventh rule, confluence fails: take
the expression iz (s (p z)). It can be reduced to t and, with another strategy, to f . But
neither t nor f can be reduced further.

Exercises. 1. Find e such that JeK=⊥ and e ∗ t .

2. Give appropriate reduction rules for the extensions of Expr that you have considered
in one of the previous exercises.

3. Explain in which step the proof of confluence fails for the reduction system with the
seventh rule considered in Remark 6.

LECTURE 3 (7 FEBRUARY 2018)

This lecture consisted of an introduction to Agda. Please see the website for details. You can
find the Agda file there, and you can complete the definition of J−K as a useful exercise.

8

LECTURE 4 (8 FEBRUARY 2018)

In the first half of the lecture, we discussed possible projects for the G54FPP module. Please
see the website for the list of projects that we had. Afterwards, we continued with properties
of the language Expr .
The following is some useful terminology which we should keep in mind:

Definition 7. A redex is an expression which can be reduced without using the structural rules,
and an expression is in normal form if it does not contain a redex (i.e. if it cannot be reduced
at all). Further (for our language Expr), an expression e is a value if it is in one of the following
languages:

Bv ::= t | f

Nv ::= z | s (Nv)

In other words, a value is either t or f or a sequence of s applied on z .

Lemma 8. There is no infinite sequence of reduction steps e1 e2 e3

Proof. Most of the time, the easiest way to prove this sorts of statement is to find a function
f : Expr →N such that (e e ′) ⇒ (f (e) > f (e ′)). Assuming that we have an infinite sequence
e1 e2 e3 . . ., we then get an infinite sequence of natural numbers, decreasing
in each step, which is impossible. Here, as f (e) we can take the function which counts the
number of nodes in the syntax tree of e, and it’s easy to see that this number decreases with
every reduction step.

Remark 9. The statement that each sequence of reductions is finite is very simple for our
language Expr . For other reduction systems (e.g. the simply typed λ-calculus), this is less
trivial.

What does it mean to “fully evaluate” an expression using the reduction rules that we have
discussed? Given an expression, we want to reduce it and eventually reach a normal form. But
what if we never reach a normal form, or there are multiple normal forms that we could reach?
Fortunately, for our language Expr , this cannot happen. We have all ingredients necessary to
prove this:

Theorem 10 (unique normal forms). Let e be an expression in the language Expr . Then, there
is exactly one (i.e. a unique) normal form d : Expr such that e ∗ d.

Proof. Given e, we can start reducing randomly. By Lemma 8, we eventually reach some d
which cannot be reduced anymore. Thus, d is a normal form by definition. We need to show
that d is unique. Assume that there is a second normal form c such that e ∗ c. By the
confluence theorem (Theorem 4), we get an expression b together with reduction sequences
c ∗ b and d ∗ b. But, since c and d cannot be reduced, these reduction sequences must
both consist of zero steps. This means that d , b and c are all equal.

We have looked at denotational and operational semantics for Expr . How do they compare?
We have already seen in the lecture (see the first exercise of Lecture 2) that expressions e
where JeK is undefined may still reduce to a value (J−K is strict, while is not). However, we
can say something for the other direction:

9

Theorem 11. If we have an expression e such that JeK is a boolean value or a number, then
there is a value v such that e ∗ v. More precisely,

• if JeK= True, then e ∗ t .

• if JeK= False, then e ∗ f .

• if JeK= n (where n is a number), then e ∗ s (s (. . . (s z) . . .)), where the number of
s coincides with n.

The proof will be given in Lecture 5.

Exercises. 1. Find a new reduction rule such that, if you add this reduction rule to the
rules given in the lecture, Lemma 8 becomes wrong.

2. Find a new additional reduction rule such that Theorem 10 becomes wrong. Find a rule
which makes both Theorem 10 and Lemma 8 wrong.

3. Find a new additional reduction rule such that Theorem 10 still holds, but Lemma 8
becomes wrong.

4. Find a new additional reduction such that Lemma 8 still holds, but Theorem 10 be-
comes wrong.

5. Is it possible to add a new reduction rule such that Theorem 11 becomes wrong?

LECTURE 5 (14 FEBRUARY 2018)

Expr is an inductively generated set, like the natural numbers, lists, trees, and many other
datatypes that we regularly use. Therefore, we can prove properties by induction. Let P be
a property of expressions; we write P (e) for “the property P holds for expression e”. The
induction principle says: If we can prove P (e) under the assumption that P (e ′) holds for all
subexpressions e ′ of e, then P (e) holds for all expressions e. (A subexpression is a subtree in
the syntax tree.) The concrete form in which it is usually used is the following:

Principle 12 (Induction for Expr). Assume P is a property of expressions. Assume all of the
following hold:

• P (t)

• P (f)

• P (z)

• ∀e.P (e) ⇒ P (s e)

• ∀e.P (e) ⇒ P (p e)

• ∀e.P (e) ⇒ P (iz e)

• ∀e1,e2,e3. (P (e1)∧P (e2)∧P (e3)) ⇒ P (if e1 then e2 else e3)

Then, we can conclude ∀e.P (e).

10

Remark 13. The above principle looks a bit weaker than what we said informally directly
before, since in Principle 12, not all subexpressions can be assumed to satisfy P . Neverthe-
less, Principle 12 is what is used nearly always, and the two formulations can be shown to be
equivalent.

Let us use this induction principle to prove the theorem from last lecture:

Theorem 11. If we have an expression e such that JeK is a boolean value or a number, then
there is a value v such that e ∗ v. More precisely,

• if JeK= True, then e ∗ t .

• if JeK= False, then e ∗ f .

• if JeK= n (where n is a number), then e ∗ s (s (. . . (s z) . . .)), where the number of
s coincides with n.

Proof. Let us define four properties A, B , C , and P :

• A(e) := (JeK= True) ⇒ (e ∗ t)

• B(e) := (JeK= False) ⇒ (e ∗ f)

• C (e) := (JeK = n) ⇒ (e ∗ s (s (. . . (s z) . . .))), where n is a number and s occurs n
times

• P (e) := A(e)∧B(e)∧C (e)

We apply induction (Principle 12). Thus, we need to show all the points in the list of assump-
tions of this principle.

• SHOW P (t):

Since this is a conjunction, we show A, B , C separately. We start with A(t). We can
assume J t K= True; unfortunately, this does not give us any new information. We need
to show t ∗ t ; fortunately, this is clearly the case (in 0 steps).

Next, we need to show B(t). We can assume J t K = False. If we look at the defini-
tion of J−K, we see that this case cannot occur; hence, there is nothing to do (from a
contradictory assumption, we can conclude whatever we want: ex falso quodlibet).

We also need to show C (t). In this case, the assumption is J t K= n. Again, this cannot
happen and there is nothing to do.

• SHOW P (f):

Very similar to the above. This time, A(f) and C (f) have assumptions which are
not satisfied, and the only case in which we have to do something is B(f), where the
conclusion is trivial (f ∗ f).

• SHOW P (z):

Again, very similar.

11

• SHOW ∀e.P (e) ⇒ P (s e):

Let e be an expression. We can assume P (e). We need to show P (s e); again, we show
A(s e) and B(s e) and C (s e) separately.

We start with A(s e). In this case, we can assume J s eK = True. Looking at how J−K is
defined, we see that this is impossible.

Similarly, B(s e) requires us to show something under an impossible assumption.

Finally, if we want to show C (s e), we can assume J s eK = n, for a number n. Looking
at the definition of J−K, we see that this can only happen if JeK = (n − 1) and n ≥ 1.
Remember that we have assumed P (e); thus, in particular, we know C (e). Together, C (e)
and JeK= (n −1) show that we have e ∗ s (s (. . . (s z) . . .)), with (n −1) occurrences
of s . Using one of the structural rules, we get that e ∗ s (s (. . . (s z) . . .)) with n
occurrences of s , as required.

• SHOW P (p e):

This is similar to the case s e that we have just discussed.

• SHOW P (iz e):

Again, similar to the discussed case.

• SHOW P (if e1 then e2 else e3):

We can assume P (e1) and P (e2) and P (e3). We need to show A(if e1 then e2 else e3)
and B(if e1 then e2 else e3) and C (if e1 then e2 else e3).

Let us discuss the goal A(if e1 then e2 else e3). We can assume J if e1 then e2 else e3K=
True. If we look at the definition of J−K, we see that this is possible in two cases:

1. first case: Je1K= True and Je2K= True and Je3K is a boolean (either True or False).
Recall that we can assume P (e1), thus in particular A(e1). From this, we get e1 ∗

t . Thus, by repeating the fourth structural rule (as given in Lecture 2),1 we have

if e1 then e2 else e3
∗ if t then e2 else e3.

The first simplification rule of ifthenelse gives us

if t then e2 else e3 e2.

Since we know Je2K= True, we get from A(e2) that e2 ∗ t . By combining these
reductions, we have

if e1 then e2 else e3 t

as required

2. second case: Je1K = False and Je3K = True and Je2K is a boolean (either True or
False). Following the same strategy as in the first case, we get the desired result.

1“Repeating this rule” is, to be precise, another argument by induction – this is how one would formalise it in a
proof assistant.

12

We now have to show B(if e1 then e2 else e3) and C (if e1 then e2 else e3). These
are essentially copies of our argument for A(if e1 then e2 else e3).

Remark 14. The above proof demonstrates how this sort of proof by induction can lead to
many cases. Although most cases are easy, it is easy to miss one, or overlook a hidden diffi-
culty. This is a situation in which a proof assistant can shine.

Remark 15. As someone has remarked, instead of Expr we can consider the language

E := B | N
B := t | f | iz N | if B then B else B

N := z | s N | p N | if B then N else N

The language E has the same “meaningful” expressions as Expr , but the typing ensures that
“meaningless” (in the sense of JeK=⊥) expressions are impossible to form. This is the general
idea of types.

Exercises. 1. Can you reduce a single reduction rule such that the proof of this lecture fails
and Theorem 11 becomes wrong? Which reduction rules can do the job?

LECTURE 6 (15 FEBRUARY 2018)

We have implemented more parts of these notes (operational semantics) in Agda. Please see
the Agda files on the website. I have added an easy, a medium, and a very hard exercise to the
main file.

13

