
Chapter 7

Recursive Types

By adding special rules for natural numbers to λ→ , we obtained system T .
We may now want to have separate rules for other data structures: lists, binary
trees, streams. We can adapt the notions we implemented for Nat. We used
three kinds of rules:

Introduction Rules: They tell us how we construct elements of the type. They
usually consists of constructors, that is, operators for all the different
shapes that an element can have.

Elimination Rules: They tell us how to use a type, specifically how to define
a function from it to any other type. They usually consist of recursion
principles that specify how to generate a result for each of the constructors
given in the introduction rules.

Reduction Rules: They tell us how to compute with the type. Usually, they
specify how the functions defined using the elimination rules operate on
each of the forms of elements defined by the introduction rules.

The description above fits with a class of types called inductive types. We
will consider another class called coinductive types. They are both examples of
recursive types: types whose elements are recursively defined, that is, an element
has a structure that consists of a constructor applied to other elements of the
same type.

For inductive types, this recursive structure must be well-founded: elements
are constructed bottom-up, starting from simple base elements and then build-
ing new ones by applying constructors to previously defined elements. Examples
of inductive types are natural numbers and lists.

For coinductive types, the recursive structure may be non-well-founded: el-
ements are generated top-down: we may unfold an element to obtain its top
constructor and new elements that we can further unfold. The process may go
on forever. An example of a coinductive type is streams.

53

CHAPTER 7. RECURSIVE TYPES

We have already seen the rules a typical inductive type, Nat, in the previous
chapter. Before we talk about the general rules for recursive types, let’s see a
typical example of a coinductive one.

Bit Streams

A bit stream is an infinite sequence of binary digits. We use the following
notation for them:

0 ⊳ 1 ⊳ 1 ⊳ 0 ⊳ 1 ⊳ 0 ⊳ 0 ⊳ 0 ⊳ 1 ⊳ · · · .

Let’s see how we can implement them by a type defined by giving rules of
Introduction, Elimination and Reduction.

Notice, first of all, that it is insufficient to give introduction rules just spec-
ifying the constructors:

s : BitStream
0 ⊳ s : BitStream

s : BitStream
1 ⊳ s : BitStream

The reason these rules are inadequate is that it is impossible to start building
a stream. There is no base case: both rules require in their assumption a
previously existing stream s.

It is impossible to build a stream bottom-up, because there is no bottom.
Instead we should give a rule that allows us to generate a stream dynamically.
The idea is that a stream is given by a process which evolves by generating the
elements of the stream and changing its state.

Introduction Rule (CoRecursion): For every type X (type of states of
the process) we have:

f : X → Bit t : X → X

corec f t : X → BitStream

where Bit = {0, 1}. Corecursion gives a way to define functions from any
type X to BitStream, so it works in a dual way to the recursion principle
for Nat. That one was an elimination rule, because it told us how to use
natural numbers; this one is an introduction rule, because it tells us how
to generate bit streams.

Elimination Rules (Observation):

s : BitStream
bit s : Bit

s : BitStream
next s : BitStream

These two rules allow us to observe the first element of a stream and
to generate its tail. Imagine that the stream is in a certain initial state:
applying bit to it returns the first bit; applying next to it causes the stream
to change state and become ready to produce the second element.

V Capretta 54 G54FOP 2018

CHAPTER 7. RECURSIVE TYPES

Reduction Rules:

bit (corec f t x) f x

next (corec f t x) corec f t (t x).

These rules express the fact that we see the type X as representing the
possible states of a process that generates the stream. The first rule says
that the function f is used to observe the first bit of the stream. The
second rule says that the function t is applied to change the state of the
stream and get it ready to generate the second element.

The idea is that, starting with an initial state x0, the process goes through
a sequence of steps in which it generates the next element of the output stream
using f and changes the state using t.

x0 x1 x2 · · ·

b0 b1 b2 · · ·

t t t

f f f

The pair of functions 〈f, t〉 is called a coalgebra. Coalgebras are the general
method to generate elements of coinductive types. We’ll study the general
theory of coalgebras later. Informally we will write

corec f t x0 = b0 ⊳ b1 ⊳ b2 ⊳ · · ·

but notice that there is no reduction rule computing (corec f t x0) by itself:
we must apply either bit or next for some computation step to happen. This
is different to the situation in the untyped λ-calculus, where a stream would
automatically reduce to the unfolding as a repeated pairing. That was possible
because in the λ-calculus we could write non-normalizing terms. Now we want
to keep the strong normal form property, so infinite structures are inert until
we apply either an observation or a transition function to them.

Let’s see a couple of examples of functions generating bit streams. The first
one alternates the bits 0 and 1 forever, starting from either of them:

alternate : Bit → BitStream

alternate = corec id flip

where id = identity function on bits
flip : Bit → Bit

flip 0 = 1
flip 1 = 0

Intuitively we have:

alternate 0 = 0 ⊳ 1 ⊳ 0 ⊳ 1 ⊳ 0 ⊳ 1 ⊳ · · · , alternate 1 = 1 ⊳ 0 ⊳ 1 ⊳ 0 ⊳ 1 ⊳ 0 ⊳ · · · .

V Capretta 55 G54FOP 2018

CHAPTER 7. RECURSIVE TYPES

Our second example is the definition of a stream consisting in stretches of
1s of increasing lengths, separated by single 0s (we use the notation 1n for n

consecutive 1s):

0 ⊳ 10 ⊳ 0 ⊳ 11 ⊳ 0 ⊳ 12 ⊳ 0 ⊳ 13 ⊳ 0 ⊳ 14 ⊳ 0 ⊳ · · ·
= 0 ⊳ 0 ⊳ 1 ⊳ 0 ⊳ 1 ⊳ 1 ⊳ 0 ⊳ 1 ⊳ 1 ⊳ 1 ⊳ 0 ⊳ 1 ⊳ 1 ⊳ 1 ⊳ 1 ⊳ 0 ⊳ · · · .

To generate this stream using the corecursion rule, we must get it by applying
a corecursive function to an initial state. We need to generalize the stream:
define a set of states, each corresponding to a stream, such that our stream
corresponds to one of the states. We choose as states pair of natural numbers
〈n,m〉, with the idea that this state will generate the stream

1m ⊳ 0 ⊳ 1n ⊳ 0 ⊳ 1n+1 ⊳ 0 ⊳ 1n+2 ⊳ 0 ⊳ · · · .

Then the stream we want will be generated by 〈0, 0〉.
So we set the state type to be X = Nat × Nat (assume we have product

types for now, we will study their rules soon). The observation and transition
functions are then:

f : Nat× Nat → Bit

f 〈n, 0〉 = 0
f 〈n, succm〉 = 1

t : Nat× Nat → Nat× Nat

t 〈n, 0〉 = 〈succn, n〉
t 〈n, succm〉 = 〈n,m〉

You can verify for yourself that we then have:

corec f t 〈0, 0〉 = 0 ⊳ 10 ⊳ 0 ⊳ 11 ⊳ 0 ⊳ 12 ⊳ 0 ⊳ 13 ⊳ 0 ⊳ 14 ⊳ 0 ⊳ · · · .

By generalizing the rules, simply replacing the type Bit by any type A, we
obtain the type StreamA of streams of elements of A.

Enumerations, Products, Sums

We have taken for granted, in the previous section, that we have a type Bit

containing two elements 0 and 1, and the product type Nat×Nat. We have seen
earlier that these types can be realized already in λ→ : Bit is essentially the
same as Bool, which we can realize as Bool = o → o → o, and the product can be
realized as Nat×Nat = (Nat → Nat → Nat) → Nat. But these formalizations are
difficult to use. In particular, the implementation of Bool allows only conditional
expressions that return something of type o, and we must use an higher order
type of Boolean if we want to return a different type (we would need BoolNat =
Nat → Nat → Nat to eliminate towards the natural numbers).

So we are going to introduce specific types for Booleans or bits and for
products, using the familiar pattern of three groups of rules for introduction,
elimination and reduction. These types are not recursive: the introduction rules
don’t have any assumption of a previously constructed element of the same type
itself.

The rules for Booleans are the following (the rules for Bit are exactly the
same, we just change the names of false to 0 and true to 1).

V Capretta 56 G54FOP 2018

CHAPTER 7. RECURSIVE TYPES

Introduction:

false : Bool true : Bool

Elimination: For every type X:

b : Bool x0 : X x1 : X
if b thenx0 elsex1 : X

Reduction:
if false thenx0 elsex1 x0

if true thenx0 elsex1 x1

It’s easy to generalize this definition to any enumeration type, that is, any
type that consists of a finite number of constant elements. For example, if we
want to define a type of colours Color = {blue, red, green}, we can simply repeat
the pattern of the rules of Bool:

Introduction:

blue : Color red : Color green : Color

Elimination: For every type X:

c : Color xb : X xr : X xg : X
elimColor c xb xr xg : X

Reduction:
elimColor bluexb xr xg xb

elimColor redxb xr xg xr

elimColor greenxb xr xg xg

Given any two types A and B, we define the Cartesian product A × B as
the type with the following rules.

Introduction:
a : A b : B
〈a, b〉 : A×B

Elimination:
p : A×B

π1 p : A
p : A×B

π2 p : B

Reduction:
π1 〈a, b〉 a

π2 〈a, b〉 b

V Capretta 57 G54FOP 2018

CHAPTER 7. RECURSIVE TYPES

Finally, another useful type is the sum, or disjoint union, of two types A

and B, A + B. It contains a copy of A and a copy of B, generated by two
introduction rules. The elimination rule does case analysis on which of the two
sets an element comes from.

Introduction:
a : A

inl a : A+B

b : B
inr b : A+B

Elimination: For every type X:

c : A+B f : A → X g : B → X

case c f g : X

Reduction:
case (inl a) f g f a

case (inr b) f g g b

Inductive Types

We come now to the general form of inductive types, which follows the pattern
that we have seen for Nat in system T . We’ll have introduction rules describing
how the elements of the type are generated; some of them can be recursive,
building an element from previously constructive elements. The elimination rule
will be a recursion principle allowing us to define functions from the inductive
type to any other type. Finally, the reduction rules will specify how the recursor
behaves when applied to each of the ways of constructing an element given in
the introduction rules.

Let’s see another example first: given a type A, let’s define a type of lists
of elements of type A, ListA. We’ll have two introduction rules: the first one
just constructs the empty list, the second one takes a previously defined list and
attaches a new element of A in front of it.

Introduction:

nil : ListA

a : A l : ListA
a :: l : ListA

Elimination: For every type X:

f : A → ListA → X → X x0 : X
recList f x0 : ListA → X

Reduction:
recList f x0 nil x0

recList f x0 (a :: l) f a l (recList f x0 l)

V Capretta 58 G54FOP 2018

CHAPTER 7. RECURSIVE TYPES

Let’s see two examples of functions that can be defined by recursion on lists.
The first adds up all the elements of a list of natural numbers.

sumList : ListNat → Nat

sumList = recList (λa.λl.λs.plus a s) 0

It is equivalent to the following informal definition by pattern-matching:

sumList : ListNat → Nat

sumList nil = 0
sumList (a :: l) = a+ sumList l

The second example is the computation of the reverse of a list. So reverse (3::
8 :: 0 :: 4 :: nil) = 4 :: 0 :: 8 :: 3 :: nil. To do it efficiently, we use higher-order recursion,
similarly to what we have done for the Fibonacci numbers: instead of just
returning a single list as result, we return a function from lists to lists. The
idea is that the auxiliary function reverseapp will append the reverse of its first
argument to the second argument. For example:

reverseapp (3 :: 8 :: 0 :: 4 :: nil) (7 :: 1 :: 2 :: 6 :: nil) = 4 :: 0 :: 8 :: 3 :: 7 :: 1 :: 2 :: 6 :: nil

Informally, we can define it as:

reverseapp : ListA → (ListA → ListA)
reverseapp nil = λl2.l2
reverseapp (a :: l1) = λl2.reverseapp l1 (a :: l2)

reverse : ListA → ListA
reverse l = reverseapp l nil

Using the list recursion, this becomes:

reverseapp = recList (λa.λl1.λrevapp·l1 .λl2.revapp·l1 (a :: l2)) (λl2.l2)
reverse = λl.reverseapp l nil

Let us now see the general form of an inductive type. We can see it’s con-
structors as forming an algebra of constants and operations. For example, the
constructors for natural numbers are a constant zero : Nat and an operation
succ : Nat → Nat; the constructors for lists are a constant nil : ListA and an
operation cons : A → ListA → ListA. We may consider a generic algebra of
the same shape, where we replace the type we are defining with any type X.
For example, a generic algebra for natural numbers would consist of a constant
x0 : X and an operation s : X → X; a generic algebra for lists would consist of
a constant x0 : X and an operation c : A → X → X.

We can specify the type Nat by saying that the introduction rules give a
specific algebra and the elimination rule states that if X is any algebra, then
there is a function from Nat to X. Similarly for lists.

Let’s generalize this. What is the general notion of an algebra? How can we
specify abstractly a set of constants and operations?

Definition 10 A functor is an operator F from types to types that can also be
applied to functions, preserving identities and compositions. So for every type

V Capretta 59 G54FOP 2018

CHAPTER 7. RECURSIVE TYPES

X, F X is also a type, and for every function f : X → Y , there is a function
F f : F X → F Y such that

F idX = idF X

F (g ◦ f) = F g ◦ F f.

For example, the specification of the natural numbers and of lists of elements
of A can be expressed by the functors

FNat X = 1+X

FListA X = 1+A×X

(1 is the type with a single element ⋆.)

Definition 11 An algebra for a functor F is a pair 〈X,α〉, where X is a type
and α : F X → X.

So an algebra for natural numbers is 〈X,α〉 where α : 1+X → X. Notice that
a function from a sum type is equivalent to two functions from the components.
So we have the correspondence:

α : 1+X → X ⇔ x0 : X, s : X → X.

Given an α, we can define x0 = α (inl ⋆) and s = λx.α (inr x); given x0 and s,
we can define α = λy.case y (λu.x0) (λx.s x).

Similarly, an algebra for lists of elements of A is 〈X,α〉 where

α : 1+A×X → X ⇔ x0 : X, c : A → X → X.

Not all functors can be used to define an inductive type.

Definition 12 A functor is strictly positive if it is defined by an expression
that only uses constant types, the variable type X and the operators ×, +, →,
so that X only occurs to the right of arrows.

The functors FNat and FListA are strictly positive (they don’t use the arrow
at all). An example of a strictly positive functor that uses the arrow is F X =
1 + (N → X). Here X occurs directly to the right of the arrow. On the other
hand the (continuation) functor F X = (X → N) → N is not strictly positive
because X occurs to the left of two arrows.

Definition 13 For every strictly positive functor F , the inductive type µF

(also called the weak initial algebra of F) is defined by the rules:

Introduction:
t : F (µF)
in t : µF

V Capretta 60 G54FOP 2018

CHAPTER 7. RECURSIVE TYPES

Elimination: For every type X:

f : F X → X

cata f : µF → X

This states that for every F -algebra 〈X, f〉 there exists a function (called
the catamorphism of f) from the inductive type µF to X.

Reduction:
cata f (in t) = f (F (cata f) t)

Remember that the functor F can be applied to functions. Since cata f :
µF → X, we have F (cata f) : F (µF) → F X, so it can be applied to
t : F (µF) to obtain a value of type F X.

Let’s see how these rules correspond to the ones we gave for the types Nat

and ListA.
We have only one introduction rule, instead of two. That is because the

functor packs two different ways of constructing an element using the sum of
types. We can show that Nat is equivalent to µFNat by defining the zero and
successor constructors in terms of in:

zero : µFNat succ : µFNat → µFNat

zero = in (inl ⋆) succ = λn.in (inr n).

Defining the elimination/recursion rule for Nat in terms of cata requires using a
familiar trick. The elimination rule for µF is actually a form of iteration. If we
instantiate it for FNat we obtain:

f : 1+X → X

cata f : µFNat → X equivalent to
x0 : X g : X → X

iteratex0 g : µFNat → X

where iteratex0 g = cata (λy.caseu (λu.x0) g). This gives us a method of defi-
nition by iteration, the same that we obtained using Church numerals. To get
the full recursion principle we need to allow the use of the argument in the
recursive case. As we have done when programming in the untyped λ-calculus,
we can do it by using pairing to remember the value. Assume we are given
h : Nat → X → X and a : X, we can define

rec+ : µFNat → µFNat ×X rech a : µFNat → X

rec+ = iterate 〈0, a〉 (λp.〈succ (π1 p), h (π1 p) (π2 p)〉) rech a = λn.π2 (rec
+ n).

TO DO [Verify that the reduction rules for Nat follow from the reduction

rules for µFNat.]
Similarly, ListA is equivalent to µFListA by defining the empty list and the

cons constructor in terms of in:

nil : µFListA cons : A → µFListA → µFListA

nil = in (inl ⋆) cons = λa.λl.in (inr 〈a, l〉).

TO DO [Show how to define recList from cata.]

V Capretta 61 G54FOP 2018

CHAPTER 7. RECURSIVE TYPES

CoInductive Types

Coinductive types contain data structures that may have infinitely descending
paths. One example is the type of streams over some type A. Another example
is the type TreeA of infinite binary trees with nodes labelled by elements of a
type A. Graphically, an element of TreeA looks like this:

a0

a1

a3

∆ ∆

a4

∆ ∆

a2

a5

∆ ∆

a6

∆ ∆

These trees have no leaves: the branches grow to infinite length. The formal
rules follow the same pattern as those for streams:

Introduction (CoRecursion): For every type X:

f : X → A l : X → X r : X → X

corecTreeA f l r : X → TreeA

As in the example of bit stream, we think of X as a type of process states.
Given a process x, the tree (corecTreeA f l r x) is generated as follows. The
function f tells us what the label of the root of the tree is: a0 = f x.
Then the process spawns two other processes x1 = l x and x2 = r x. We
use x1 to generate the left child subtree and x2 to generate the right child
subtree.

Elimination (Observation):

t : TreeA
label t : A

t : TreeA
left t : TreeA

t : TreeA
right t : TreeA

These rules give the label on the root of the tree and the left and right
subtrees.

Reduction Rules:

label (corecTreeA f l r x) f x

left (corecTreeA f l r x) corecTreeA f l r (l x)
right (corecTreeA f l r x) corecTreeA f l r (r x)

As an example of a function that generates infinite trees, let’s just label each

V Capretta 62 G54FOP 2018

CHAPTER 7. RECURSIVE TYPES

node with its depth:

0

1

2

3

∆ ∆

3

∆ ∆

2

∆ ∆

1

2

∆ ∆

2

∆ ∆

We generalize this to a function from natural numbers that starts labelling
at a given depth.

depthTree : Nat → TreeNat
depthTree = corecTreeNat (λn.n) (λn.succn) (λn.succn)

Then depthTree 0 is the tree pictured above.
Another example is a function that maps streams to trees. Given a stream

a0 ⊳ a1 ⊳ a2 ⊳ a3 ⊳ a4 ⊳ a5 ⊳ a6 ⊳ a7 ⊳ a8 ⊳ · · ·

it uses its head element a0 to label the root of the tree, then unzips the tail of
the streams, obtaining two streams

a1 ⊳ a3 ⊳ a5 ⊳ a7 ⊳ · · ·
a2 ⊳ a4 ⊳ a6 ⊳ a8 ⊳ · · ·

and uses them to generate the left and right subtree.
Assume we have the following functions:

head : StreamA → A

tail : StreamA → StreamA

evens : StreamA → StreamA

odds : StreamA → StreamA

giving the first element of a stream, the stream of elements after the first, the
stream of elements in even positions, the stream of elements in odd positions.

TO DO [Define these functions using the formal rules for streams.]
Then the informal definition of the mapping between streams and trees is:

strTree : StreamA → TreeA
strTree (a0 ⊳ s) = node a0 (strTree (evens s)) (strTree (odds s))

which can be expressed by using the corecursor:

strTree = corecTreeA head (evens ◦ tail) (odds ◦ tail).

V Capretta 63 G54FOP 2018

CHAPTER 7. RECURSIVE TYPES

The rules for streams and infinite binary trees can be generalized to obtain
abstract rules for coinductive types, in the same way we generalized the rules
of natural numbers and lists to obtain the abstract rules for inductive types.

We need to dualize every notion: repeat the same definitions but reversing
the direction of the arrows.

Definition 14 An coalgebra for a functor F is a pair 〈X, γ〉, where X is a type
and γ : X → F X.

Definition 15 For every strictly positive functor F , the coinductive type νF

(also called the weak final coalgebra of F) is defined by the rules:

Introduction: For every type X:

f : X → F X

ana f : X → νF

This states that for every F -coalgebra 〈X, f〉 there exists a function (called
the anamorphism of f) from X to the co inductive type νF .

Elimination:
u : νF

outu : F νF

Reduction:
out (ana f x) F (ana f) (f x).

In particular, the type StreamA is equivalent to νFStreamA
where FStreamA

X =
A×X and the type TreeA is equivalent to νFTreeA where FTreeA X = A×X×X.

TO DO [Show these equivalences in detail.]

V Capretta 64 G54FOP 2018

